Precision detection of select human lung cancer biomarkers and cell lines using honeybee olfactory neural circuitry as a novel gas sensor

肺癌 生物标志物 人口 癌症 触角叶 生物 嗅觉 神经科学 病理 癌症研究 医学 内科学 生物化学 环境卫生
作者
Michael Parnas,Autumn K. McLane-Svoboda,Elyssa Cox,Summer B. McLane-Svoboda,Simon Sanchez,Alexander Farnum,Anthony Tundo,Noël Lefevre,Sydney Miller,Emily Neeb,Christopher H. Contag,Debajit Saha
出处
期刊:Biosensors and Bioelectronics [Elsevier BV]
卷期号:261: 116466-116466 被引量:4
标识
DOI:10.1016/j.bios.2024.116466
摘要

Human breath contains biomarkers (odorants) that can be targeted for early disease detection. It is well known that honeybees have a keen sense of smell and can detect a wide variety of odors at low concentrations. Here, we employ honeybee olfactory neuronal circuitry to classify human lung cancer volatile biomarkers at different concentrations and their mixtures at concentration ranges relevant to biomarkers in human breath from parts-per-billion to parts-per-trillion. We also validated this brain-based sensing technology by detecting human non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) cell lines using the 'smell' of the cell cultures. Different lung cancer biomarkers evoked distinct spiking response dynamics in the honeybee antennal lobe neurons indicating that those neurons encoded biomarker-specific information. By investigating lung cancer biomarker-evoked population neuronal responses from the honeybee antennal lobe, we classified individual human lung cancer biomarkers successfully (88% success rate). When we mixed six lung cancer biomarkers at different concentrations to create 'synthetic lung cancer' vs. 'synthetic healthy' human breath, honeybee population neuronal responses were able to classify those complex breath mixtures reliably with exceedingly high accuracy (93-100% success rate with a leave-one-trial-out classification method). Finally, we employed this sensor to detect human NSCLC and SCLC cell lines and we demonstrated that honeybee brain olfactory neurons could distinguish between lung cancer vs. healthy cell lines and could differentiate between different NSCLC and SCLC cell lines successfully (82% classification success rate). These results indicate that the honeybee olfactory system can be used as a sensitive biological gas sensor to detect human lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
三木完成签到,获得积分10
3秒前
spenley完成签到,获得积分10
3秒前
小马甲应助文静的如娆采纳,获得10
3秒前
芒小果发布了新的文献求助10
6秒前
Jc完成签到 ,获得积分10
7秒前
7秒前
9秒前
士多啤梨完成签到 ,获得积分10
10秒前
10秒前
小叮当完成签到 ,获得积分10
13秒前
慕青应助芒小果采纳,获得10
13秒前
情怀应助文静的如娆采纳,获得10
15秒前
练英雄发布了新的文献求助10
16秒前
生如夏花完成签到,获得积分10
16秒前
panda完成签到,获得积分10
17秒前
卜靖荷给卜靖荷的求助进行了留言
19秒前
斯文败类应助yagkinc采纳,获得10
27秒前
27秒前
饼饼发布了新的文献求助10
32秒前
dnbe完成签到,获得积分10
34秒前
深海鱼完成签到,获得积分10
38秒前
40秒前
星辰大海应助dnbe采纳,获得10
41秒前
41秒前
Jc发布了新的文献求助10
45秒前
48秒前
orixero应助:P采纳,获得10
48秒前
淡淡的白羊完成签到 ,获得积分10
49秒前
沉默寻凝发布了新的文献求助30
50秒前
qwh完成签到,获得积分20
50秒前
科目三应助准炮打不准采纳,获得10
51秒前
njsj关注了科研通微信公众号
52秒前
17381362015发布了新的文献求助10
53秒前
56秒前
58秒前
hui完成签到,获得积分20
59秒前
无花果应助科研通管家采纳,获得10
59秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967080
求助须知:如何正确求助?哪些是违规求助? 3512449
关于积分的说明 11163289
捐赠科研通 3247337
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804450