Noise reduction of axial piston motors using multi-objective optimization of reinforcing ribs based on identification of acoustic sources

活塞(光学) 还原(数学) 降噪 鉴定(生物学) 声学 噪音(视频) 噪声控制 材料科学 计算机科学 工程类 物理 数学 人工智能 几何学 植物 波前 光学 图像(数学) 生物
作者
Hui Huang,Zhen Zhang,Zhichao Li,Yuzheng Li,Xiufang Lin,Qi‐Fang Huang,Jun‐Zhao Sun
出处
期刊:Applied Acoustics [Elsevier]
卷期号:222: 110044-110044
标识
DOI:10.1016/j.apacoust.2024.110044
摘要

The optimization of the housing for reducing vibration and noise in axial piston motors is facing challenges related to inaccurate locations of acoustic sources and inappropriate optimization parameters. In this study, a multi-objective optimization of the thicknesses of the reinforcing ribs for reducing the noise of axial piston motors is investigated by using the compression sensing (CS) method and response surface methodology (RSM). Combined with the CS method, the high-resolution reconstruction of sound-intensity images is used to guide the structural optimization areas through locations of acoustic sources. To reduce vibration and noise, the variable rib structure model (VRSM) is established in structural optimization areas. The thicknesses of reinforcing ribs in different areas are considered optimization variables, while the motor housing's peak vibration acceleration obtained by coupling the motor's dynamic model with the hydraulic model is utilized as the objective function. The mathematical relationship between these variables and the objective function is established through the RSM. Utilizing these functions, a multi-objective optimization model is formulated for discretizing the thicknesses of reinforcing ribs to reduce noise, employing a multi-objective genetic algorithm (MOGA) for optimization calculations. Finally, comparing the sound pressure levels of the axial piston motor with and without the optimized reinforcing ribs, the experimental results demonstrate a notable reduction in noise with the optimized reinforcing ribs. Specifically, there's a reduction of 2.7 dB at the peak frequency of 610 Hz.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
nemo发布了新的文献求助10
1秒前
学术蝗虫完成签到,获得积分10
1秒前
justin完成签到,获得积分10
2秒前
西瓜啵啵完成签到,获得积分10
4秒前
小周完成签到,获得积分10
4秒前
Louki完成签到 ,获得积分10
4秒前
温暖的颜演完成签到 ,获得积分10
5秒前
yudandan@CJLU发布了新的文献求助10
6秒前
科研小民工应助_呱_采纳,获得50
6秒前
愉快盼曼完成签到,获得积分20
6秒前
研友_VZG7GZ应助小狗同志006采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
13679165979发布了新的文献求助10
8秒前
温暖的钻石完成签到,获得积分10
8秒前
科研通AI5应助赖道之采纳,获得10
8秒前
9秒前
苏卿应助Eric采纳,获得10
9秒前
思源应助hhzz采纳,获得10
10秒前
红红完成签到,获得积分10
13秒前
瑶一瑶发布了新的文献求助10
13秒前
NexusExplorer应助刘鹏宇采纳,获得10
13秒前
roselau完成签到,获得积分10
13秒前
yudandan@CJLU完成签到,获得积分10
14秒前
14秒前
半山完成签到,获得积分10
18秒前
吹泡泡的红豆完成签到 ,获得积分10
19秒前
研友_89eBO8完成签到 ,获得积分10
19秒前
隐形曼青应助ZeJ采纳,获得10
19秒前
19秒前
隐形曼青应助温暖的钻石采纳,获得10
20秒前
Khr1stINK发布了新的文献求助10
21秒前
123cxj发布了新的文献求助10
22秒前
星辰大海应助红红采纳,获得10
22秒前
sweetbearm应助小周采纳,获得10
23秒前
科研通AI5应助赖道之采纳,获得10
23秒前
24秒前
HonamC完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808