已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning neural networks with input processing for vibration-based bearing fault diagnosis under imbalanced data conditions

人工神经网络 断层(地质) 方位(导航) 卷积神经网络 人工智能 计算机科学 稳健性(进化) 水准点(测量) 深度学习 小波变换 信号处理 模式识别(心理学) 数据挖掘 小波 机器学习 地质学 地震学 数字信号处理 生物化学 化学 大地测量学 计算机硬件 基因 地理
作者
J. Prawin
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
被引量:14
标识
DOI:10.1177/14759217241246508
摘要

Deep learning (DL) networks, such as convolutional neural networks (CNNs) and long short-term memory (LSTM), have gained popularity for bearing fault diagnosis utilizing raw vibration signals. However, their accuracy and stability are compromised when facing imbalanced real-world datasets. This research investigates the impact of imbalanced datasets and explores the potential of signal processing techniques on network inputs compared to the direct use of raw vibration signals. The DL techniques studied include LSTM, one-dimensional CNN, and two-dimensional (2D) CNN, and a novel hybrid 2DCNNLSTM algorithm, incorporating signal processing methods such as Fourier transform and continuous wavelet transform while maintaining nearly equal parameters and the same base architecture. The proposed hybrid 2DCNNLSTM algorithm combines the strengths of LSTM and CNN, allowing for improved bearing diagnosis by capturing both spatial and temporal information in vibration signals. The proposed 2DCNNLSTM algorithm also considers multi-channel input augmenting raw vibration signal, mean, and variance channels to extract meaningful features and enhance classification efficiency. The publicly available Case Western Reserve University benchmark-bearing test rig dataset with ten fault classes, the Paderborn University dataset with three fault classes, and NASA Centre for Intelligent Maintenance Systems bearing datasets with five fault classes are utilized to test the proposed deep learning networks’ accuracy, effectiveness, robustness, and stability. The studies reveal that the hybrid 2DCNNLSTM-based networks outperform both CNN and LSTM networks, even without input processing. Further, utilizing multi-channel input by augmenting the 2D raw signal with mean and variance value channels proves to be more efficient in handling imbalanced and complex datasets while employing a 2DCNNLSTM-based network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
点点完成签到 ,获得积分10
1秒前
zjx发布了新的文献求助10
2秒前
Adian完成签到,获得积分10
3秒前
桌子不齐邓紫棋完成签到,获得积分20
3秒前
科研通AI6应助吴雨茜采纳,获得10
7秒前
大个应助自己个儿采纳,获得10
10秒前
赘婿应助辛勤的志泽采纳,获得10
11秒前
12秒前
Aha完成签到 ,获得积分10
13秒前
16秒前
16秒前
16秒前
许晴完成签到 ,获得积分10
17秒前
Fjj完成签到,获得积分10
19秒前
啾啾发布了新的文献求助100
19秒前
moiaoh完成签到,获得积分10
21秒前
21秒前
23秒前
27秒前
科研通AI5应助啾啾采纳,获得10
29秒前
胡一刀完成签到,获得积分10
30秒前
dreamboat完成签到,获得积分10
31秒前
31秒前
梁梁完成签到 ,获得积分10
33秒前
33秒前
沉静乾发布了新的文献求助10
33秒前
34秒前
36秒前
梁海萍发布了新的文献求助10
36秒前
EKo完成签到,获得积分10
37秒前
情怀应助zjx采纳,获得10
37秒前
畅快枕头完成签到 ,获得积分0
38秒前
SciHub完成签到 ,获得积分10
38秒前
草莓熊1215完成签到 ,获得积分10
39秒前
彭于晏应助科研通管家采纳,获得10
40秒前
bkagyin应助科研通管家采纳,获得10
40秒前
FashionBoy应助科研通管家采纳,获得10
40秒前
40秒前
爆米花应助科研通管家采纳,获得30
40秒前
李文豪发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4925756
求助须知:如何正确求助?哪些是违规求助? 4195911
关于积分的说明 13031268
捐赠科研通 3967492
什么是DOI,文献DOI怎么找? 2174627
邀请新用户注册赠送积分活动 1191845
关于科研通互助平台的介绍 1101628