Deep learning neural networks with input processing for vibration-based bearing fault diagnosis under imbalanced data conditions

人工神经网络 断层(地质) 方位(导航) 振动 人工智能 计算机科学 深度学习 数据处理 模式识别(心理学) 机器学习 声学 地质学 地震学 物理 操作系统
作者
J. Prawin
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
标识
DOI:10.1177/14759217241246508
摘要

Deep learning (DL) networks, such as convolutional neural networks (CNNs) and long short-term memory (LSTM), have gained popularity for bearing fault diagnosis utilizing raw vibration signals. However, their accuracy and stability are compromised when facing imbalanced real-world datasets. This research investigates the impact of imbalanced datasets and explores the potential of signal processing techniques on network inputs compared to the direct use of raw vibration signals. The DL techniques studied include LSTM, one-dimensional CNN, and two-dimensional (2D) CNN, and a novel hybrid 2DCNNLSTM algorithm, incorporating signal processing methods such as Fourier transform and continuous wavelet transform while maintaining nearly equal parameters and the same base architecture. The proposed hybrid 2DCNNLSTM algorithm combines the strengths of LSTM and CNN, allowing for improved bearing diagnosis by capturing both spatial and temporal information in vibration signals. The proposed 2DCNNLSTM algorithm also considers multi-channel input augmenting raw vibration signal, mean, and variance channels to extract meaningful features and enhance classification efficiency. The publicly available Case Western Reserve University benchmark-bearing test rig dataset with ten fault classes, the Paderborn University dataset with three fault classes, and NASA Centre for Intelligent Maintenance Systems bearing datasets with five fault classes are utilized to test the proposed deep learning networks’ accuracy, effectiveness, robustness, and stability. The studies reveal that the hybrid 2DCNNLSTM-based networks outperform both CNN and LSTM networks, even without input processing. Further, utilizing multi-channel input by augmenting the 2D raw signal with mean and variance value channels proves to be more efficient in handling imbalanced and complex datasets while employing a 2DCNNLSTM-based network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tianny完成签到,获得积分10
刚刚
浪迹天涯发布了新的文献求助10
1秒前
星星发布了新的文献求助10
1秒前
李瑞瑞完成签到,获得积分10
2秒前
2秒前
4秒前
星辰大海应助jy采纳,获得10
4秒前
5秒前
我是站长才怪应助Khr1stINK采纳,获得10
5秒前
6秒前
xh完成签到,获得积分10
7秒前
para_团结完成签到,获得积分10
8秒前
怡然剑成发布了新的文献求助10
8秒前
9秒前
9秒前
ipeakkka发布了新的文献求助10
9秒前
George完成签到,获得积分10
11秒前
WDK完成签到,获得积分10
11秒前
情怀应助敏感的芷采纳,获得10
11秒前
Orange应助方勇飞采纳,获得10
12秒前
FashionBoy应助烂漫驳采纳,获得10
12秒前
13秒前
14秒前
大鱼完成签到,获得积分10
14秒前
14秒前
lu完成签到,获得积分10
15秒前
Murphy完成签到 ,获得积分10
15秒前
斯文败类应助大方嵩采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
CodeCraft应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得30
16秒前
hh应助科研通管家采纳,获得10
16秒前
Ava应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得20
16秒前
桐桐应助科研通管家采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824