Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study

病危 医学 重症监护医学 疾病 急性肾损伤 肾脏疾病 互联网 内科学 计算机科学 万维网
作者
Mingxia Li,Shuzhe Han,Fang Liang,Chenghuan Hu,Buyao Zhang,Qinlan Hou,Shuangping Zhao
出处
期刊:Journal of Medical Internet Research 卷期号:26: e51354-e51354
标识
DOI:10.2196/51354
摘要

Background Acute kidney disease (AKD) affects more than half of critically ill elderly patients with acute kidney injury (AKI), which leads to worse short-term outcomes. Objective We aimed to establish 2 machine learning models to predict the risk and prognosis of AKD in the elderly and to deploy the models as online apps. Methods Data on elderly patients with AKI (n=3542) and AKD (n=2661) from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database were used to develop 2 models for predicting the AKD risk and in-hospital mortality, respectively. Data collected from Xiangya Hospital of Central South University were for external validation. A bootstrap method was used for internal validation to obtain relatively stable results. We extracted the indicators within 24 hours of the first diagnosis of AKI and the fluctuation range of some indicators, namely delta (day 3 after AKI minus day 1), as features. Six machine learning algorithms were used for modeling; the area under the receiver operating characteristic curve (AUROC), decision curve analysis, and calibration curve for evaluating; Shapley additive explanation (SHAP) analysis for visually interpreting; and the Heroku platform for deploying the best-performing models as web-based apps. Results For the model of predicting the risk of AKD in elderly patients with AKI during hospitalization, the Light Gradient Boosting Machine (LightGBM) showed the best overall performance in the training (AUROC=0.844, 95% CI 0.831-0.857), internal validation (AUROC=0.853, 95% CI 0.841-0.865), and external (AUROC=0.755, 95% CI 0.699–0.811) cohorts. In addition, LightGBM performed well for the AKD prognostic prediction in the training (AUROC=0.861, 95% CI 0.843-0.878), internal validation (AUROC=0.868, 95% CI 0.851-0.885), and external (AUROC=0.746, 95% CI 0.673-0.820) cohorts. The models deployed as online prediction apps allowed users to predict and provide feedback to submit new data for model iteration. In the importance ranking and correlation visualization of the model’s top 10 influencing factors conducted based on the SHAP value, partial dependence plots revealed the optimal cutoff of some interventionable indicators. The top 5 factors predicting the risk of AKD were creatinine on day 3, sepsis, delta blood urea nitrogen (BUN), diastolic blood pressure (DBP), and heart rate, while the top 5 factors determining in-hospital mortality were age, BUN on day 1, vasopressor use, BUN on day 3, and partial pressure of carbon dioxide (PaCO2). Conclusions We developed and validated 2 online apps for predicting the risk of AKD and its prognostic mortality in elderly patients, respectively. The top 10 factors that influenced the AKD risk and mortality during hospitalization were identified and explained visually, which might provide useful applications for intelligent management and suggestions for future prospective research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
虚幻夜山完成签到,获得积分10
1秒前
monicaj完成签到 ,获得积分10
1秒前
yyq617569158发布了新的文献求助10
2秒前
Vanilla发布了新的文献求助10
3秒前
cwm完成签到,获得积分10
3秒前
华仔应助vivien采纳,获得10
3秒前
凉茶完成签到,获得积分10
4秒前
香蕉觅云应助三石采纳,获得10
4秒前
5秒前
阿宁发布了新的文献求助10
7秒前
7秒前
缥缈从丹发布了新的文献求助10
8秒前
9秒前
酷波er应助大大小小采纳,获得10
9秒前
huang完成签到,获得积分20
11秒前
深情安青应助长情凝丹采纳,获得10
12秒前
13秒前
xixi发布了新的文献求助10
13秒前
Zyk完成签到,获得积分10
15秒前
阳光的芯完成签到,获得积分20
17秒前
17秒前
嗯哼举报饱满一刀求助涉嫌违规
19秒前
MoonFlows应助种一棵星星采纳,获得20
20秒前
welchm完成签到 ,获得积分10
20秒前
白白白发布了新的文献求助10
21秒前
Vanilla完成签到,获得积分10
21秒前
21秒前
鲜艳的沛春完成签到,获得积分10
22秒前
22秒前
乐乐发布了新的文献求助10
23秒前
www完成签到,获得积分10
24秒前
火柴发布了新的文献求助10
24秒前
端庄谷南完成签到 ,获得积分10
25秒前
25秒前
乐乐应助小萝卜采纳,获得10
26秒前
haha发布了新的文献求助10
26秒前
小Q啊啾发布了新的文献求助10
26秒前
Della完成签到 ,获得积分10
30秒前
31秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919