Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study

病危 医学 重症监护医学 疾病 急性肾损伤 肾脏疾病 互联网 内科学 计算机科学 万维网
作者
Mingxia Li,Shuzhe Han,Fang Liang,Chenghuan Hu,Buyao Zhang,Qinlan Hou,Shuangping Zhao
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e51354-e51354 被引量:2
标识
DOI:10.2196/51354
摘要

Background Acute kidney disease (AKD) affects more than half of critically ill elderly patients with acute kidney injury (AKI), which leads to worse short-term outcomes. Objective We aimed to establish 2 machine learning models to predict the risk and prognosis of AKD in the elderly and to deploy the models as online apps. Methods Data on elderly patients with AKI (n=3542) and AKD (n=2661) from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database were used to develop 2 models for predicting the AKD risk and in-hospital mortality, respectively. Data collected from Xiangya Hospital of Central South University were for external validation. A bootstrap method was used for internal validation to obtain relatively stable results. We extracted the indicators within 24 hours of the first diagnosis of AKI and the fluctuation range of some indicators, namely delta (day 3 after AKI minus day 1), as features. Six machine learning algorithms were used for modeling; the area under the receiver operating characteristic curve (AUROC), decision curve analysis, and calibration curve for evaluating; Shapley additive explanation (SHAP) analysis for visually interpreting; and the Heroku platform for deploying the best-performing models as web-based apps. Results For the model of predicting the risk of AKD in elderly patients with AKI during hospitalization, the Light Gradient Boosting Machine (LightGBM) showed the best overall performance in the training (AUROC=0.844, 95% CI 0.831-0.857), internal validation (AUROC=0.853, 95% CI 0.841-0.865), and external (AUROC=0.755, 95% CI 0.699–0.811) cohorts. In addition, LightGBM performed well for the AKD prognostic prediction in the training (AUROC=0.861, 95% CI 0.843-0.878), internal validation (AUROC=0.868, 95% CI 0.851-0.885), and external (AUROC=0.746, 95% CI 0.673-0.820) cohorts. The models deployed as online prediction apps allowed users to predict and provide feedback to submit new data for model iteration. In the importance ranking and correlation visualization of the model’s top 10 influencing factors conducted based on the SHAP value, partial dependence plots revealed the optimal cutoff of some interventionable indicators. The top 5 factors predicting the risk of AKD were creatinine on day 3, sepsis, delta blood urea nitrogen (BUN), diastolic blood pressure (DBP), and heart rate, while the top 5 factors determining in-hospital mortality were age, BUN on day 1, vasopressor use, BUN on day 3, and partial pressure of carbon dioxide (PaCO2). Conclusions We developed and validated 2 online apps for predicting the risk of AKD and its prognostic mortality in elderly patients, respectively. The top 10 factors that influenced the AKD risk and mortality during hospitalization were identified and explained visually, which might provide useful applications for intelligent management and suggestions for future prospective research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助wddsf采纳,获得10
刚刚
ahhh发布了新的文献求助10
刚刚
雪梅完成签到 ,获得积分10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
清爽乐菱应助科研通管家采纳,获得30
2秒前
wanci应助科研通管家采纳,获得10
2秒前
alang发布了新的文献求助10
2秒前
Rondab应助科研通管家采纳,获得50
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
5秒前
wzc完成签到,获得积分10
5秒前
6秒前
丑麒完成签到,获得积分10
6秒前
7秒前
我是老大应助tang采纳,获得10
7秒前
科研通AI2S应助Qn采纳,获得10
8秒前
任润发布了新的文献求助10
9秒前
sje发布了新的文献求助10
10秒前
11秒前
彪壮的冷霜完成签到,获得积分10
12秒前
CipherSage应助xixi采纳,获得10
13秒前
xiaoyao完成签到 ,获得积分10
13秒前
六斤发布了新的文献求助10
13秒前
爱吃狮子的画完成签到,获得积分10
13秒前
沉稳捺发布了新的文献求助50
14秒前
14秒前
我是老大应助任润采纳,获得10
15秒前
16秒前
科目三应助111采纳,获得10
18秒前
orz发布了新的文献求助10
18秒前
21秒前
杨三多发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999934
求助须知:如何正确求助?哪些是违规求助? 3539320
关于积分的说明 11276612
捐赠科研通 3277925
什么是DOI,文献DOI怎么找? 1807842
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142