Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study

病危 医学 重症监护医学 疾病 急性肾损伤 肾脏疾病 互联网 内科学 计算机科学 万维网
作者
Mingxia Li,Shuzhe Han,Fang Liang,Chenghuan Hu,Buyao Zhang,Qinlan Hou,Shuangping Zhao
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:26: e51354-e51354 被引量:21
标识
DOI:10.2196/51354
摘要

Background Acute kidney disease (AKD) affects more than half of critically ill elderly patients with acute kidney injury (AKI), which leads to worse short-term outcomes. Objective We aimed to establish 2 machine learning models to predict the risk and prognosis of AKD in the elderly and to deploy the models as online apps. Methods Data on elderly patients with AKI (n=3542) and AKD (n=2661) from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database were used to develop 2 models for predicting the AKD risk and in-hospital mortality, respectively. Data collected from Xiangya Hospital of Central South University were for external validation. A bootstrap method was used for internal validation to obtain relatively stable results. We extracted the indicators within 24 hours of the first diagnosis of AKI and the fluctuation range of some indicators, namely delta (day 3 after AKI minus day 1), as features. Six machine learning algorithms were used for modeling; the area under the receiver operating characteristic curve (AUROC), decision curve analysis, and calibration curve for evaluating; Shapley additive explanation (SHAP) analysis for visually interpreting; and the Heroku platform for deploying the best-performing models as web-based apps. Results For the model of predicting the risk of AKD in elderly patients with AKI during hospitalization, the Light Gradient Boosting Machine (LightGBM) showed the best overall performance in the training (AUROC=0.844, 95% CI 0.831-0.857), internal validation (AUROC=0.853, 95% CI 0.841-0.865), and external (AUROC=0.755, 95% CI 0.699–0.811) cohorts. In addition, LightGBM performed well for the AKD prognostic prediction in the training (AUROC=0.861, 95% CI 0.843-0.878), internal validation (AUROC=0.868, 95% CI 0.851-0.885), and external (AUROC=0.746, 95% CI 0.673-0.820) cohorts. The models deployed as online prediction apps allowed users to predict and provide feedback to submit new data for model iteration. In the importance ranking and correlation visualization of the model’s top 10 influencing factors conducted based on the SHAP value, partial dependence plots revealed the optimal cutoff of some interventionable indicators. The top 5 factors predicting the risk of AKD were creatinine on day 3, sepsis, delta blood urea nitrogen (BUN), diastolic blood pressure (DBP), and heart rate, while the top 5 factors determining in-hospital mortality were age, BUN on day 1, vasopressor use, BUN on day 3, and partial pressure of carbon dioxide (PaCO2). Conclusions We developed and validated 2 online apps for predicting the risk of AKD and its prognostic mortality in elderly patients, respectively. The top 10 factors that influenced the AKD risk and mortality during hospitalization were identified and explained visually, which might provide useful applications for intelligent management and suggestions for future prospective research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
内向井发布了新的文献求助10
1秒前
星辰完成签到,获得积分10
1秒前
1秒前
2秒前
ccc发布了新的文献求助10
2秒前
希望天下0贩的0应助czz采纳,获得10
3秒前
3秒前
lnan发布了新的文献求助10
3秒前
3秒前
东郭雁梅发布了新的文献求助10
4秒前
深情安青应助Aurora采纳,获得10
4秒前
别斑秃了完成签到 ,获得积分10
4秒前
4秒前
wheeler1完成签到,获得积分10
4秒前
打打应助科研通管家采纳,获得10
4秒前
Return应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
寻道图强应助科研通管家采纳,获得30
5秒前
annie应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
6秒前
Andd完成签到,获得积分10
6秒前
左秋白完成签到,获得积分10
6秒前
Wind应助科研通管家采纳,获得10
6秒前
寻道图强应助科研通管家采纳,获得40
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
慕青应助科研通管家采纳,获得10
6秒前
废人一个发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
852应助科研通管家采纳,获得10
7秒前
7秒前
思源应助科研通管家采纳,获得10
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420