公路运输
运输工程
业务
计算机科学
风险分析(工程)
工程类
作者
Ismail Abdulrashid,Reza Zanjirani Farahani,Shamkhal Mammadov,Mohamed Khalafalla,Wen‐Chyuan Chiang
标识
DOI:10.1016/j.tre.2024.103563
摘要
Automobile traffic accidents represent a significant threat to global public safety, resulting in numerous injuries and fatalities annually. This paper introduces a comprehensive, explainable artificial intelligence (XAI) artifact design, integrating accident data for utilization by diverse stakeholders and decision-makers. It proposes responsible, explanatory, and interpretable models with a systems-level taxonomy categorizing aspects of driver-related behaviors associated with varying injury severity levels, thereby contributing theoretically to explainable analytics. In the initial phase, we employed various advanced techniques such as data missing at random (MAR) with Bayesian dynamic conditional imputation for addressing missing records, synthetic minority oversampling technique for data imbalance issues, and categorical boosting (CatBoost) combined with SHapley Additive exPlanations (SHAP) for determining and analyzing the importance and dependence of risk factors on injury severity. Additionally, exploratory feature analysis was conducted to uncover hidden spatiotemporal elements influencing traffic accidents and injury severity levels. We developed several predictive models in the second phase, including eXtreme Gradient Boosting (XGBoost), random forest (RF), deep neural networks (DNN), and fine-tuned parameters. Using the SHAP approach, we employed model-agnostic interpretation techniques to separate explanations from models. In the final phase, we provided an analysis and summary of the system-level taxonomy across feature categories. This involved classifying crash data into high-level causal factors using aggregate SHAP scores, illustrating how each risk factor contributes to different injury severity levels.
科研通智能强力驱动
Strongly Powered by AbleSci AI