Explainable artificial intelligence in transport Logistics: Risk analysis for road accidents

范畴变量 随机森林 人工智能 贝叶斯网络 Boosting(机器学习) 机器学习 计算机科学
作者
Ismail Abdulrashid,Reza Zanjirani Farahani,Shamkhal Mammadov,Mohamed Khalafalla,Wen‐Chyuan Chiang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:186: 103563-103563 被引量:24
标识
DOI:10.1016/j.tre.2024.103563
摘要

Automobile traffic accidents represent a significant threat to global public safety, resulting in numerous injuries and fatalities annually. This paper introduces a comprehensive, explainable artificial intelligence (XAI) artifact design, integrating accident data for utilization by diverse stakeholders and decision-makers. It proposes responsible, explanatory, and interpretable models with a systems-level taxonomy categorizing aspects of driver-related behaviors associated with varying injury severity levels, thereby contributing theoretically to explainable analytics. In the initial phase, we employed various advanced techniques such as data missing at random (MAR) with Bayesian dynamic conditional imputation for addressing missing records, synthetic minority oversampling technique for data imbalance issues, and categorical boosting (CatBoost) combined with SHapley Additive exPlanations (SHAP) for determining and analyzing the importance and dependence of risk factors on injury severity. Additionally, exploratory feature analysis was conducted to uncover hidden spatiotemporal elements influencing traffic accidents and injury severity levels. We developed several predictive models in the second phase, including eXtreme Gradient Boosting (XGBoost), random forest (RF), deep neural networks (DNN), and fine-tuned parameters. Using the SHAP approach, we employed model-agnostic interpretation techniques to separate explanations from models. In the final phase, we provided an analysis and summary of the system-level taxonomy across feature categories. This involved classifying crash data into high-level causal factors using aggregate SHAP scores, illustrating how each risk factor contributes to different injury severity levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunflower完成签到,获得积分0
2秒前
2秒前
学学术术小小白白完成签到,获得积分10
2秒前
布丁完成签到,获得积分10
2秒前
距破之舞完成签到,获得积分10
2秒前
2秒前
SongWhizz发布了新的文献求助10
3秒前
大模型应助布衣采纳,获得10
4秒前
Sonny发布了新的文献求助10
4秒前
Kristin完成签到,获得积分10
4秒前
mmm驳回了bkagyin应助
6秒前
量子星尘发布了新的文献求助10
7秒前
HeyU发布了新的文献求助10
7秒前
小倒霉蛋完成签到 ,获得积分10
7秒前
7秒前
7秒前
emilybei发布了新的文献求助10
8秒前
科研通AI6应助larychen采纳,获得10
8秒前
9秒前
畅快的寻凝完成签到,获得积分10
10秒前
lin发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
12秒前
领导范儿应助诚心黑夜采纳,获得10
13秒前
13秒前
TommyLeo关注了科研通微信公众号
14秒前
hh完成签到,获得积分10
14秒前
Sonny发布了新的文献求助10
14秒前
大哥爱发文章完成签到,获得积分10
15秒前
16秒前
可爱的函函应助larychen采纳,获得10
16秒前
依依发布了新的文献求助10
17秒前
17秒前
咩咩羊发布了新的文献求助10
17秒前
yuyan发布了新的文献求助10
17秒前
樂楽完成签到,获得积分20
18秒前
tree完成签到,获得积分10
18秒前
多宝鱼儿完成签到,获得积分20
19秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5586355
求助须知:如何正确求助?哪些是违规求助? 4669622
关于积分的说明 14779253
捐赠科研通 4619608
什么是DOI,文献DOI怎么找? 2530838
邀请新用户注册赠送积分活动 1499668
关于科研通互助平台的介绍 1467830