Explainable artificial intelligence in transport Logistics: Risk analysis for road accidents

范畴变量 随机森林 人工智能 贝叶斯网络 Boosting(机器学习) 机器学习 计算机科学
作者
Ismail Abdulrashid,Reza Zanjirani Farahani,Shamkhal Mammadov,Mohamed Khalafalla,Wen‐Chyuan Chiang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:186: 103563-103563 被引量:24
标识
DOI:10.1016/j.tre.2024.103563
摘要

Automobile traffic accidents represent a significant threat to global public safety, resulting in numerous injuries and fatalities annually. This paper introduces a comprehensive, explainable artificial intelligence (XAI) artifact design, integrating accident data for utilization by diverse stakeholders and decision-makers. It proposes responsible, explanatory, and interpretable models with a systems-level taxonomy categorizing aspects of driver-related behaviors associated with varying injury severity levels, thereby contributing theoretically to explainable analytics. In the initial phase, we employed various advanced techniques such as data missing at random (MAR) with Bayesian dynamic conditional imputation for addressing missing records, synthetic minority oversampling technique for data imbalance issues, and categorical boosting (CatBoost) combined with SHapley Additive exPlanations (SHAP) for determining and analyzing the importance and dependence of risk factors on injury severity. Additionally, exploratory feature analysis was conducted to uncover hidden spatiotemporal elements influencing traffic accidents and injury severity levels. We developed several predictive models in the second phase, including eXtreme Gradient Boosting (XGBoost), random forest (RF), deep neural networks (DNN), and fine-tuned parameters. Using the SHAP approach, we employed model-agnostic interpretation techniques to separate explanations from models. In the final phase, we provided an analysis and summary of the system-level taxonomy across feature categories. This involved classifying crash data into high-level causal factors using aggregate SHAP scores, illustrating how each risk factor contributes to different injury severity levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yull完成签到,获得积分10
刚刚
可怜小爬虫完成签到 ,获得积分10
1秒前
常裤子发布了新的文献求助20
1秒前
怡然宛凝完成签到,获得积分10
1秒前
pebble完成签到,获得积分10
2秒前
煎饼煎饼完成签到,获得积分10
2秒前
笑点低靖仇完成签到,获得积分10
2秒前
2秒前
964230130完成签到,获得积分10
2秒前
彭于晏应助香氛采纳,获得10
3秒前
zhuiyu完成签到,获得积分10
3秒前
HXH完成签到,获得积分10
3秒前
小乐子完成签到,获得积分10
4秒前
mwang完成签到,获得积分10
4秒前
嘻嘻哈哈哈哈完成签到 ,获得积分10
4秒前
懦弱的易绿完成签到,获得积分10
4秒前
哈哈哈完成签到,获得积分10
5秒前
大香蕉完成签到,获得积分10
5秒前
5秒前
糕手完成签到 ,获得积分10
5秒前
无聊的万天完成签到,获得积分10
5秒前
唐唐88完成签到,获得积分10
6秒前
脆脆鲨完成签到 ,获得积分10
6秒前
小十七果完成签到,获得积分10
7秒前
7秒前
爱吃肉肉的手性分子完成签到,获得积分10
7秒前
7秒前
xue完成签到 ,获得积分10
7秒前
昨夜雨疏风骤完成签到,获得积分10
7秒前
7秒前
FashionBoy应助不散的和弦采纳,获得10
8秒前
8秒前
8秒前
xrf完成签到,获得积分10
8秒前
新新完成签到,获得积分10
9秒前
nn关闭了nn文献求助
9秒前
yamoon完成签到,获得积分10
9秒前
10秒前
10秒前
害怕的帽子完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573719
求助须知:如何正确求助?哪些是违规求助? 4659992
关于积分的说明 14727079
捐赠科研通 4599835
什么是DOI,文献DOI怎么找? 2524518
邀请新用户注册赠送积分活动 1494863
关于科研通互助平台的介绍 1464959