Explainable artificial intelligence in transport Logistics: Risk analysis for road accidents

范畴变量 随机森林 人工智能 贝叶斯网络 Boosting(机器学习) 机器学习 计算机科学
作者
Ismail Abdulrashid,Reza Zanjirani Farahani,Shamkhal Mammadov,Mohamed Khalafalla,Wen‐Chyuan Chiang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:186: 103563-103563 被引量:24
标识
DOI:10.1016/j.tre.2024.103563
摘要

Automobile traffic accidents represent a significant threat to global public safety, resulting in numerous injuries and fatalities annually. This paper introduces a comprehensive, explainable artificial intelligence (XAI) artifact design, integrating accident data for utilization by diverse stakeholders and decision-makers. It proposes responsible, explanatory, and interpretable models with a systems-level taxonomy categorizing aspects of driver-related behaviors associated with varying injury severity levels, thereby contributing theoretically to explainable analytics. In the initial phase, we employed various advanced techniques such as data missing at random (MAR) with Bayesian dynamic conditional imputation for addressing missing records, synthetic minority oversampling technique for data imbalance issues, and categorical boosting (CatBoost) combined with SHapley Additive exPlanations (SHAP) for determining and analyzing the importance and dependence of risk factors on injury severity. Additionally, exploratory feature analysis was conducted to uncover hidden spatiotemporal elements influencing traffic accidents and injury severity levels. We developed several predictive models in the second phase, including eXtreme Gradient Boosting (XGBoost), random forest (RF), deep neural networks (DNN), and fine-tuned parameters. Using the SHAP approach, we employed model-agnostic interpretation techniques to separate explanations from models. In the final phase, we provided an analysis and summary of the system-level taxonomy across feature categories. This involved classifying crash data into high-level causal factors using aggregate SHAP scores, illustrating how each risk factor contributes to different injury severity levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丝梦完成签到,获得积分10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
烟花应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
小青椒应助科研通管家采纳,获得50
刚刚
刚刚
浮游应助科研通管家采纳,获得10
刚刚
顾矜应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
二智娃娃完成签到,获得积分10
2秒前
脑洞疼应助活泼的平灵采纳,获得10
2秒前
666666发布了新的文献求助10
2秒前
2秒前
hh发布了新的文献求助10
3秒前
3秒前
dyy发布了新的文献求助10
3秒前
3秒前
DDY发布了新的文献求助10
4秒前
帅气的小鸭子完成签到,获得积分10
4秒前
受伤海秋发布了新的文献求助10
4秒前
SSSSS发布了新的文献求助10
5秒前
研友_p发布了新的文献求助10
5秒前
5秒前
shenduxiaoyu发布了新的文献求助10
5秒前
黎簇完成签到 ,获得积分10
5秒前
复杂羊青完成签到,获得积分10
5秒前
威武的语蕊完成签到,获得积分10
5秒前
鹅鹅关注了科研通微信公众号
5秒前
5秒前
杜大帅完成签到,获得积分10
6秒前
大模型应助柒柒采纳,获得10
6秒前
乐乐应助柒柒采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5415771
求助须知:如何正确求助?哪些是违规求助? 4532263
关于积分的说明 14133055
捐赠科研通 4447904
什么是DOI,文献DOI怎么找? 2439987
邀请新用户注册赠送积分活动 1431956
关于科研通互助平台的介绍 1409526