亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable artificial intelligence in transport Logistics: Risk analysis for road accidents

范畴变量 随机森林 人工智能 贝叶斯网络 Boosting(机器学习) 机器学习 计算机科学
作者
Ismail Abdulrashid,Reza Zanjirani Farahani,Shamkhal Mammadov,Mohamed Khalafalla,Wen‐Chyuan Chiang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:186: 103563-103563 被引量:7
标识
DOI:10.1016/j.tre.2024.103563
摘要

Automobile traffic accidents represent a significant threat to global public safety, resulting in numerous injuries and fatalities annually. This paper introduces a comprehensive, explainable artificial intelligence (XAI) artifact design, integrating accident data for utilization by diverse stakeholders and decision-makers. It proposes responsible, explanatory, and interpretable models with a systems-level taxonomy categorizing aspects of driver-related behaviors associated with varying injury severity levels, thereby contributing theoretically to explainable analytics. In the initial phase, we employed various advanced techniques such as data missing at random (MAR) with Bayesian dynamic conditional imputation for addressing missing records, synthetic minority oversampling technique for data imbalance issues, and categorical boosting (CatBoost) combined with SHapley Additive exPlanations (SHAP) for determining and analyzing the importance and dependence of risk factors on injury severity. Additionally, exploratory feature analysis was conducted to uncover hidden spatiotemporal elements influencing traffic accidents and injury severity levels. We developed several predictive models in the second phase, including eXtreme Gradient Boosting (XGBoost), random forest (RF), deep neural networks (DNN), and fine-tuned parameters. Using the SHAP approach, we employed model-agnostic interpretation techniques to separate explanations from models. In the final phase, we provided an analysis and summary of the system-level taxonomy across feature categories. This involved classifying crash data into high-level causal factors using aggregate SHAP scores, illustrating how each risk factor contributes to different injury severity levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助zjc采纳,获得10
1秒前
zjc完成签到,获得积分20
7秒前
机灵的衬衫完成签到 ,获得积分10
20秒前
孟筱完成签到 ,获得积分10
20秒前
FashionBoy应助高贵小兔子采纳,获得10
26秒前
46秒前
云舒发布了新的文献求助30
49秒前
自然的如南完成签到,获得积分10
49秒前
liwang9301完成签到,获得积分10
49秒前
50秒前
YZF发布了新的文献求助10
57秒前
小太阳完成签到 ,获得积分10
59秒前
高贵小兔子完成签到,获得积分10
59秒前
1分钟前
朱文韬发布了新的文献求助10
1分钟前
脑洞疼应助yuyuyu采纳,获得10
1分钟前
1分钟前
Ava应助明理妙柏采纳,获得10
1分钟前
Jasper应助云舒采纳,获得10
1分钟前
小叶完成签到 ,获得积分10
1分钟前
彭于晏应助Vaibhav采纳,获得10
1分钟前
量子星尘发布了新的文献求助100
1分钟前
云舒完成签到,获得积分10
1分钟前
小马甲应助高贵小兔子采纳,获得10
1分钟前
桐桐应助KID采纳,获得10
1分钟前
Catalina完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
雪花精灵发布了新的文献求助10
1分钟前
jyy完成签到,获得积分10
1分钟前
光亮的天真完成签到 ,获得积分10
1分钟前
xx发布了新的文献求助30
1分钟前
Vaibhav发布了新的文献求助10
1分钟前
KID发布了新的文献求助10
1分钟前
1分钟前
yuyuyu发布了新的文献求助10
1分钟前
大模型应助雪花精灵采纳,获得10
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960030
求助须知:如何正确求助?哪些是违规求助? 3506241
关于积分的说明 11128455
捐赠科研通 3238225
什么是DOI,文献DOI怎么找? 1789595
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056