Explainable artificial intelligence in transport Logistics: Risk analysis for road accidents

范畴变量 随机森林 人工智能 贝叶斯网络 Boosting(机器学习) 机器学习 计算机科学
作者
Ismail Abdulrashid,Reza Zanjirani Farahani,Shamkhal Mammadov,Mohamed Khalafalla,Wen‐Chyuan Chiang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:186: 103563-103563 被引量:24
标识
DOI:10.1016/j.tre.2024.103563
摘要

Automobile traffic accidents represent a significant threat to global public safety, resulting in numerous injuries and fatalities annually. This paper introduces a comprehensive, explainable artificial intelligence (XAI) artifact design, integrating accident data for utilization by diverse stakeholders and decision-makers. It proposes responsible, explanatory, and interpretable models with a systems-level taxonomy categorizing aspects of driver-related behaviors associated with varying injury severity levels, thereby contributing theoretically to explainable analytics. In the initial phase, we employed various advanced techniques such as data missing at random (MAR) with Bayesian dynamic conditional imputation for addressing missing records, synthetic minority oversampling technique for data imbalance issues, and categorical boosting (CatBoost) combined with SHapley Additive exPlanations (SHAP) for determining and analyzing the importance and dependence of risk factors on injury severity. Additionally, exploratory feature analysis was conducted to uncover hidden spatiotemporal elements influencing traffic accidents and injury severity levels. We developed several predictive models in the second phase, including eXtreme Gradient Boosting (XGBoost), random forest (RF), deep neural networks (DNN), and fine-tuned parameters. Using the SHAP approach, we employed model-agnostic interpretation techniques to separate explanations from models. In the final phase, we provided an analysis and summary of the system-level taxonomy across feature categories. This involved classifying crash data into high-level causal factors using aggregate SHAP scores, illustrating how each risk factor contributes to different injury severity levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dancingidam完成签到,获得积分10
刚刚
LL完成签到,获得积分20
1秒前
universe完成签到,获得积分20
1秒前
小韩小韩发布了新的文献求助10
1秒前
Jasper应助ygm采纳,获得10
1秒前
小蘑菇应助坏坏的小鱼鱼采纳,获得10
1秒前
2秒前
韩德胜完成签到 ,获得积分10
2秒前
醉熏的烤鸡完成签到,获得积分10
2秒前
星辰大海应助幽默的尔蓝采纳,获得10
2秒前
wang完成签到,获得积分10
3秒前
山茶完成签到,获得积分10
3秒前
科研通AI6应助天天开心采纳,获得10
4秒前
amy发布了新的文献求助10
4秒前
4秒前
研友_ndDY5n完成签到,获得积分10
4秒前
时尚小霜完成签到 ,获得积分10
4秒前
Litm完成签到 ,获得积分10
4秒前
4秒前
GJ发布了新的文献求助10
6秒前
yunga完成签到,获得积分10
6秒前
咚咚完成签到,获得积分10
6秒前
A_Caterpillar完成签到,获得积分10
6秒前
6秒前
6秒前
Ade完成签到,获得积分10
7秒前
7秒前
7秒前
tt完成签到,获得积分10
7秒前
SKY完成签到,获得积分10
7秒前
程大海完成签到,获得积分10
8秒前
abjz完成签到,获得积分10
8秒前
8秒前
8秒前
mirror发布了新的文献求助10
8秒前
凌爽完成签到,获得积分10
9秒前
快乐小白发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629190
求助须知:如何正确求助?哪些是违规求助? 4719742
关于积分的说明 14968190
捐赠科研通 4787245
什么是DOI,文献DOI怎么找? 2556261
邀请新用户注册赠送积分活动 1517404
关于科研通互助平台的介绍 1478115