Explainable artificial intelligence in transport Logistics: Risk analysis for road accidents

公路运输 运输工程 业务 计算机科学 风险分析(工程) 工程类
作者
Ismail Abdulrashid,Reza Zanjirani Farahani,Shamkhal Mammadov,Mohamed Khalafalla,Wen‐Chyuan Chiang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:186: 103563-103563 被引量:3
标识
DOI:10.1016/j.tre.2024.103563
摘要

Automobile traffic accidents represent a significant threat to global public safety, resulting in numerous injuries and fatalities annually. This paper introduces a comprehensive, explainable artificial intelligence (XAI) artifact design, integrating accident data for utilization by diverse stakeholders and decision-makers. It proposes responsible, explanatory, and interpretable models with a systems-level taxonomy categorizing aspects of driver-related behaviors associated with varying injury severity levels, thereby contributing theoretically to explainable analytics. In the initial phase, we employed various advanced techniques such as data missing at random (MAR) with Bayesian dynamic conditional imputation for addressing missing records, synthetic minority oversampling technique for data imbalance issues, and categorical boosting (CatBoost) combined with SHapley Additive exPlanations (SHAP) for determining and analyzing the importance and dependence of risk factors on injury severity. Additionally, exploratory feature analysis was conducted to uncover hidden spatiotemporal elements influencing traffic accidents and injury severity levels. We developed several predictive models in the second phase, including eXtreme Gradient Boosting (XGBoost), random forest (RF), deep neural networks (DNN), and fine-tuned parameters. Using the SHAP approach, we employed model-agnostic interpretation techniques to separate explanations from models. In the final phase, we provided an analysis and summary of the system-level taxonomy across feature categories. This involved classifying crash data into high-level causal factors using aggregate SHAP scores, illustrating how each risk factor contributes to different injury severity levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
cctv18应助完美的海秋采纳,获得10
2秒前
3秒前
狂野的汉堡完成签到,获得积分10
3秒前
噜噜噜发布了新的文献求助10
6秒前
6秒前
花式帅发布了新的文献求助10
8秒前
man发布了新的文献求助10
9秒前
nanjiren发布了新的文献求助10
9秒前
11秒前
不配.应助hegui采纳,获得50
11秒前
在水一方应助高无怨采纳,获得10
11秒前
Akim应助张瑞雪采纳,获得10
12秒前
强劲完成签到 ,获得积分10
12秒前
情怀应助逍遥子采纳,获得10
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
852应助杏梨采纳,获得10
15秒前
xiaoKai完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
烛畔旧盟发布了新的文献求助10
18秒前
wonhui发布了新的文献求助10
18秒前
有魅力荟发布了新的文献求助10
18秒前
晚心发布了新的文献求助10
18秒前
天天快乐应助多情的如天采纳,获得10
18秒前
li发布了新的文献求助10
18秒前
lx发布了新的文献求助10
20秒前
tuanheqi应助就是躺采纳,获得30
21秒前
nanjiren完成签到,获得积分10
22秒前
小白发布了新的文献求助10
22秒前
糖小湫发布了新的文献求助10
22秒前
22秒前
花式帅完成签到,获得积分10
22秒前
FashionBoy应助科研通管家采纳,获得10
23秒前
修仙应助科研通管家采纳,获得10
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244258
求助须知:如何正确求助?哪些是违规求助? 2887961
关于积分的说明 8250828
捐赠科研通 2556504
什么是DOI,文献DOI怎么找? 1384815
科研通“疑难数据库(出版商)”最低求助积分说明 649936
邀请新用户注册赠送积分活动 626021