Explainable artificial intelligence in transport Logistics: Risk analysis for road accidents

范畴变量 随机森林 人工智能 贝叶斯网络 Boosting(机器学习) 机器学习 计算机科学
作者
Ismail Abdulrashid,Reza Zanjirani Farahani,Shamkhal Mammadov,Mohamed Khalafalla,Wen‐Chyuan Chiang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:186: 103563-103563 被引量:24
标识
DOI:10.1016/j.tre.2024.103563
摘要

Automobile traffic accidents represent a significant threat to global public safety, resulting in numerous injuries and fatalities annually. This paper introduces a comprehensive, explainable artificial intelligence (XAI) artifact design, integrating accident data for utilization by diverse stakeholders and decision-makers. It proposes responsible, explanatory, and interpretable models with a systems-level taxonomy categorizing aspects of driver-related behaviors associated with varying injury severity levels, thereby contributing theoretically to explainable analytics. In the initial phase, we employed various advanced techniques such as data missing at random (MAR) with Bayesian dynamic conditional imputation for addressing missing records, synthetic minority oversampling technique for data imbalance issues, and categorical boosting (CatBoost) combined with SHapley Additive exPlanations (SHAP) for determining and analyzing the importance and dependence of risk factors on injury severity. Additionally, exploratory feature analysis was conducted to uncover hidden spatiotemporal elements influencing traffic accidents and injury severity levels. We developed several predictive models in the second phase, including eXtreme Gradient Boosting (XGBoost), random forest (RF), deep neural networks (DNN), and fine-tuned parameters. Using the SHAP approach, we employed model-agnostic interpretation techniques to separate explanations from models. In the final phase, we provided an analysis and summary of the system-level taxonomy across feature categories. This involved classifying crash data into high-level causal factors using aggregate SHAP scores, illustrating how each risk factor contributes to different injury severity levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sandy完成签到,获得积分10
刚刚
1秒前
mmm在线求大佬相助完成签到,获得积分20
1秒前
QYF发布了新的文献求助10
1秒前
爱笑愚志发布了新的文献求助10
1秒前
耍酷的斑马完成签到,获得积分10
2秒前
鲤鱼山人发布了新的文献求助10
2秒前
2秒前
AAA专业修蹄车师傅完成签到,获得积分20
2秒前
殷勤的紫槐应助xyz采纳,获得200
2秒前
zzioo发布了新的文献求助10
2秒前
Ava应助王悦靓采纳,获得10
2秒前
2秒前
科研通AI6应助六碳烷采纳,获得10
2秒前
精灵夜雨完成签到 ,获得积分10
2秒前
WX完成签到,获得积分10
2秒前
3秒前
3秒前
yycyj1123发布了新的文献求助10
3秒前
3秒前
坚定的依琴完成签到,获得积分10
4秒前
4秒前
阿耒完成签到,获得积分10
4秒前
完美世界应助拼搏的飞薇采纳,获得10
4秒前
lixiaofan发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
谢灵运发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
6秒前
李爱国应助DJ采纳,获得10
7秒前
7秒前
阿耒发布了新的文献求助10
7秒前
7秒前
DR_ZHANG发布了新的文献求助10
7秒前
echo发布了新的文献求助20
7秒前
852应助危机的无极采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869