Explainable artificial intelligence in transport Logistics: Risk analysis for road accidents

范畴变量 随机森林 人工智能 贝叶斯网络 Boosting(机器学习) 机器学习 计算机科学
作者
Ismail Abdulrashid,Reza Zanjirani Farahani,Shamkhal Mammadov,Mohamed Khalafalla,Wen‐Chyuan Chiang
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier]
卷期号:186: 103563-103563 被引量:24
标识
DOI:10.1016/j.tre.2024.103563
摘要

Automobile traffic accidents represent a significant threat to global public safety, resulting in numerous injuries and fatalities annually. This paper introduces a comprehensive, explainable artificial intelligence (XAI) artifact design, integrating accident data for utilization by diverse stakeholders and decision-makers. It proposes responsible, explanatory, and interpretable models with a systems-level taxonomy categorizing aspects of driver-related behaviors associated with varying injury severity levels, thereby contributing theoretically to explainable analytics. In the initial phase, we employed various advanced techniques such as data missing at random (MAR) with Bayesian dynamic conditional imputation for addressing missing records, synthetic minority oversampling technique for data imbalance issues, and categorical boosting (CatBoost) combined with SHapley Additive exPlanations (SHAP) for determining and analyzing the importance and dependence of risk factors on injury severity. Additionally, exploratory feature analysis was conducted to uncover hidden spatiotemporal elements influencing traffic accidents and injury severity levels. We developed several predictive models in the second phase, including eXtreme Gradient Boosting (XGBoost), random forest (RF), deep neural networks (DNN), and fine-tuned parameters. Using the SHAP approach, we employed model-agnostic interpretation techniques to separate explanations from models. In the final phase, we provided an analysis and summary of the system-level taxonomy across feature categories. This involved classifying crash data into high-level causal factors using aggregate SHAP scores, illustrating how each risk factor contributes to different injury severity levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈利波特大完成签到,获得积分10
刚刚
刚刚
蓝天发布了新的文献求助10
1秒前
33发布了新的文献求助10
1秒前
2秒前
guoym发布了新的文献求助10
2秒前
椰汁驳回了英姑应助
2秒前
2秒前
Lawenced完成签到,获得积分10
3秒前
3秒前
321完成签到,获得积分10
4秒前
4秒前
tong发布了新的文献求助30
4秒前
5秒前
Ruadong完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
Stone发布了新的文献求助10
6秒前
852应助33采纳,获得10
6秒前
Nobody完成签到,获得积分10
7秒前
DreamSeker8发布了新的文献求助10
8秒前
8秒前
8秒前
Owen_Hu_11完成签到,获得积分10
9秒前
小兵大大怪完成签到,获得积分10
9秒前
苦苦发布了新的文献求助10
9秒前
MANI完成签到,获得积分20
9秒前
Ruadong发布了新的文献求助10
10秒前
10秒前
爆米花应助盛夏采纳,获得10
10秒前
mmmmm发布了新的文献求助10
11秒前
Jerrie完成签到,获得积分10
11秒前
echo1993完成签到 ,获得积分10
11秒前
xue发布了新的文献求助10
11秒前
勤恳的曼凡完成签到 ,获得积分10
11秒前
11秒前
Hello应助Auoror采纳,获得10
11秒前
爱学习完成签到 ,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836