Rapid, antibiotic incubation-free determination of tuberculosis drug resistance using machine learning and Raman spectroscopy

莫西沙星 结核分枝杆菌 肺结核 微生物学 抗生素 抗药性 病菌 抗生素耐药性 利福平 异烟肼 人工智能 医学 机器学习 生物 病理 计算机科学
作者
Babatunde Ogunlade,Loza F. Tadesse,Hongquan Li,Nhat Vu,Niaz Banaei,Amy K. Barczak,Amr A. E. Saleh,Manu Prakash,Jennifer A. Dionne
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (25) 被引量:2
标识
DOI:10.1073/pnas.2315670121
摘要

Tuberculosis (TB) is the world’s deadliest infectious disease, with over 1.5 million deaths and 10 million new cases reported anually. The causative organism Mycobacterium tuberculosis (Mtb) can take nearly 40 d to culture, a required step to determine the pathogen’s antibiotic susceptibility. Both rapid identification and rapid antibiotic susceptibility testing of Mtb are essential for effective patient treatment and combating antimicrobial resistance. Here, we demonstrate a rapid, culture-free, and antibiotic incubation-free drug susceptibility test for TB using Raman spectroscopy and machine learning. We collect few-to-single-cell Raman spectra from over 25,000 cells of the Mtb complex strain Bacillus Calmette-Guérin (BCG) resistant to one of the four mainstay anti-TB drugs, isoniazid, rifampicin, moxifloxacin, and amikacin, as well as a pan-susceptible wildtype strain. By training a neural network on this data, we classify the antibiotic resistance profile of each strain, both on dried samples and on patient sputum samples. On dried samples, we achieve >98% resistant versus susceptible classification accuracy across all five BCG strains. In patient sputum samples, we achieve ~79% average classification accuracy. We develop a feature recognition algorithm in order to verify that our machine learning model is using biologically relevant spectral features to assess the resistance profiles of our mycobacterial strains. Finally, we demonstrate how this approach can be deployed in resource-limited settings by developing a low-cost, portable Raman microscope that costs <$5,000. We show how this instrument and our machine learning model enable combined microscopy and spectroscopy for accurate few-to-single-cell drug susceptibility testing of BCG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哒哒哒完成签到 ,获得积分10
刚刚
英姑应助opq856采纳,获得30
1秒前
脑洞疼应助哈喽小雪采纳,获得10
2秒前
简让发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
osmanthus应助1459采纳,获得10
3秒前
李长流发布了新的文献求助10
3秒前
乐乐应助不知江月待何人采纳,获得10
3秒前
Rachel发布了新的文献求助10
4秒前
酷波er应助shunshun122采纳,获得10
4秒前
ding应助小羊咩咩采纳,获得10
4秒前
xiaiojin发布了新的文献求助10
4秒前
粥粥完成签到,获得积分10
5秒前
Owen应助萍子采纳,获得10
5秒前
酷酷珠完成签到,获得积分10
5秒前
6秒前
天上的鱼完成签到,获得积分10
6秒前
wizard关注了科研通微信公众号
6秒前
桑榆非晚发布了新的文献求助10
6秒前
生椰拿铁完成签到,获得积分10
7秒前
7秒前
andy发布了新的文献求助10
8秒前
8秒前
8秒前
在水一方应助666采纳,获得10
9秒前
9秒前
一串数字发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
科研通AI5应助1459采纳,获得10
11秒前
情怀应助LDDD采纳,获得10
11秒前
Akim应助微凉采纳,获得10
12秒前
腼腆的以蕊完成签到,获得积分20
12秒前
12秒前
12秒前
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756055
求助须知:如何正确求助?哪些是违规求助? 3299291
关于积分的说明 10109581
捐赠科研通 3013845
什么是DOI,文献DOI怎么找? 1655326
邀请新用户注册赠送积分活动 789704
科研通“疑难数据库(出版商)”最低求助积分说明 753361