Rapid, antibiotic incubation-free determination of tuberculosis drug resistance using machine learning and Raman spectroscopy

莫西沙星 结核分枝杆菌 肺结核 微生物学 抗生素 抗药性 病菌 抗生素耐药性 利福平 异烟肼 人工智能 医学 机器学习 生物 病理 计算机科学
作者
Babatunde Ogunlade,Loza F. Tadesse,Hongquan Li,Nhat Vu,Niaz Banaei,Amy K. Barczak,Amr A. E. Saleh,Manu Prakash,Jennifer A. Dionne
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (25) 被引量:8
标识
DOI:10.1073/pnas.2315670121
摘要

Tuberculosis (TB) is the world’s deadliest infectious disease, with over 1.5 million deaths and 10 million new cases reported anually. The causative organism Mycobacterium tuberculosis (Mtb) can take nearly 40 d to culture, a required step to determine the pathogen’s antibiotic susceptibility. Both rapid identification and rapid antibiotic susceptibility testing of Mtb are essential for effective patient treatment and combating antimicrobial resistance. Here, we demonstrate a rapid, culture-free, and antibiotic incubation-free drug susceptibility test for TB using Raman spectroscopy and machine learning. We collect few-to-single-cell Raman spectra from over 25,000 cells of the Mtb complex strain Bacillus Calmette-Guérin (BCG) resistant to one of the four mainstay anti-TB drugs, isoniazid, rifampicin, moxifloxacin, and amikacin, as well as a pan-susceptible wildtype strain. By training a neural network on this data, we classify the antibiotic resistance profile of each strain, both on dried samples and on patient sputum samples. On dried samples, we achieve >98% resistant versus susceptible classification accuracy across all five BCG strains. In patient sputum samples, we achieve ~79% average classification accuracy. We develop a feature recognition algorithm in order to verify that our machine learning model is using biologically relevant spectral features to assess the resistance profiles of our mycobacterial strains. Finally, we demonstrate how this approach can be deployed in resource-limited settings by developing a low-cost, portable Raman microscope that costs <$5,000. We show how this instrument and our machine learning model enable combined microscopy and spectroscopy for accurate few-to-single-cell drug susceptibility testing of BCG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详的语蕊完成签到,获得积分10
1秒前
1秒前
负责以山发布了新的文献求助10
2秒前
2秒前
123456hhh完成签到,获得积分10
2秒前
苏苏苏完成签到,获得积分10
2秒前
毛77完成签到,获得积分10
2秒前
春天在这李完成签到,获得积分10
3秒前
孩子气发布了新的文献求助10
3秒前
犹豫寒云完成签到,获得积分10
4秒前
CodeCraft应助YAMO一采纳,获得10
4秒前
4秒前
4秒前
白也完成签到,获得积分10
5秒前
Wsyyy发布了新的文献求助10
5秒前
苏苏苏发布了新的文献求助10
6秒前
要减肥笑阳完成签到 ,获得积分10
6秒前
6秒前
kw完成签到 ,获得积分10
6秒前
缓慢小松鼠完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
liuyu0209完成签到 ,获得积分10
8秒前
来世飞鸟发布了新的文献求助10
8秒前
WangSiya完成签到,获得积分10
9秒前
英俊的铭应助zzq采纳,获得10
9秒前
鱼梓发布了新的文献求助10
9秒前
余生发布了新的文献求助10
9秒前
褚乘风完成签到,获得积分10
10秒前
小白完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
yznfly应助自由的思枫采纳,获得20
12秒前
也许完成签到,获得积分10
12秒前
善学以致用应助panpan111采纳,获得10
12秒前
yuanbao完成签到,获得积分10
13秒前
张伟卓发布了新的文献求助10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
112233完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953854
求助须知:如何正确求助?哪些是违规求助? 3499843
关于积分的说明 11096972
捐赠科研通 3230263
什么是DOI,文献DOI怎么找? 1785901
邀请新用户注册赠送积分活动 869663
科研通“疑难数据库(出版商)”最低求助积分说明 801530