Deep Learning for Satellite Image Time-Series Analysis: A review

遥感 地球观测 卫星 土地覆盖 植被(病理学) 资源(消歧) 卫星图像 计算机科学 自然资源管理 自然资源 环境科学 气象学 土地利用 地理 工程类 航空航天工程 土木工程 病理 生物 医学 计算机网络 生态学
作者
Lynn Miller,Charlotte Pelletier,Geoffrey I. Webb
出处
期刊:IEEE Geoscience and Remote Sensing Magazine [Institute of Electrical and Electronics Engineers]
卷期号:12 (3): 81-124 被引量:4
标识
DOI:10.1109/mgrs.2024.3393010
摘要

Earth observation (EO) satellite missions have been providing detailed images about the state of Earth and its land cover for over 50 years. Long-term missions, such as those of NASA's Landsat, Terra, and Aqua satellites, and more recently, the European Space Agency's (ESA's) Sentinel missions, record images of the entire world every few days. Although single images provide point-in-time data, repeated images of the same area, or satellite image time series (SITS), provide information about the changing state of vegetation and land use. These SITS are useful for modeling dynamic processes and seasonal changes, such as plant phenology. They have potential benefits for many aspects of land and natural resource management, including applications in agricultural, forest, water, and disaster management; urban planning; and mining. However, the resulting SITS are complex, incorporating information from the temporal, spatial, and spectral dimensions. Therefore, deep learning (DL) methods are often deployed, as they can analyze these complex relationships. This review article presents a summary of the state-of-the-art methods of modeling environmental, agricultural, and other EO variables from SITS data using DL methods. We aim to provide a resource for remote sensing experts interested in using DL techniques to enhance EO models with temporal information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
问天完成签到 ,获得积分10
1秒前
Fairy完成签到,获得积分10
1秒前
黎明发布了新的文献求助10
2秒前
隐形冷亦完成签到,获得积分10
2秒前
3秒前
3秒前
深情安青应助清爽慕山采纳,获得10
3秒前
Orange应助mnc采纳,获得10
5秒前
斯文败类应助MA采纳,获得10
6秒前
绵杨发布了新的文献求助10
7秒前
7秒前
9秒前
馍夹菜完成签到,获得积分10
10秒前
zfd发布了新的文献求助10
11秒前
吴海娇完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
一个可爱玉完成签到,获得积分20
14秒前
英俊的铭应助chaoschen采纳,获得50
18秒前
星辰大海应助忧心的清炎采纳,获得10
18秒前
慕青应助一个可爱玉采纳,获得10
19秒前
21秒前
充电宝应助Luke采纳,获得10
22秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
25秒前
dala发布了新的文献求助30
26秒前
Go完成签到,获得积分10
27秒前
爆米花应助无心的土豆采纳,获得10
28秒前
28秒前
咖褐完成签到 ,获得积分10
29秒前
zwj完成签到,获得积分20
29秒前
kk发布了新的文献求助10
29秒前
29秒前
在水一方应助繁荣的牛排采纳,获得10
29秒前
fsdghert发布了新的文献求助10
32秒前
34秒前
包容的雁枫完成签到,获得积分10
34秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425319
求助须知:如何正确求助?哪些是违规求助? 4539387
关于积分的说明 14167836
捐赠科研通 4456897
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740