Deep Learning for Satellite Image Time-Series Analysis: A review

遥感 系列(地层学) 卫星 卫星图像 时间序列 计算机科学 深度学习 人工智能 地质学 气象学 地理 机器学习 工程类 航空航天工程 古生物学
作者
Lynn Miller,Charlotte Pelletier,Geoffrey I. Webb
出处
期刊:IEEE Geoscience and Remote Sensing Magazine [Institute of Electrical and Electronics Engineers]
卷期号:: 2-45 被引量:2
标识
DOI:10.1109/mgrs.2024.3393010
摘要

Earth observation (EO) satellite missions have been providing detailed images about the state of Earth and its land cover for over 50 years. Long-term missions, such as those of NASA's Landsat, Terra, and Aqua satellites, and more recently, the European Space Agency's (ESA's) Sentinel missions, record images of the entire world every few days. Although single images provide point-in-time data, repeated images of the same area, or satellite image time series (SITS), provide information about the changing state of vegetation and land use. These SITS are useful for modeling dynamic processes and seasonal changes, such as plant phenology. They have potential benefits for many aspects of land and natural resource management, including applications in agricultural, forest, water, and disaster management; urban planning; and mining. However, the resulting SITS are complex, incorporating information from the temporal, spatial, and spectral dimensions. Therefore, deep learning (DL) methods are often deployed, as they can analyze these complex relationships. This review article presents a summary of the state-of-the-art methods of modeling environmental, agricultural, and other EO variables from SITS data using DL methods. We aim to provide a resource for remote sensing experts interested in using DL techniques to enhance EO models with temporal information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伞兵龙发布了新的文献求助10
刚刚
RC_Wang应助科研小民工采纳,获得10
刚刚
sanben完成签到,获得积分10
刚刚
刚刚
_蝴蝶小姐完成签到,获得积分10
1秒前
诗轩发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
迟大猫应助乐乱采纳,获得10
3秒前
万能图书馆应助派大星采纳,获得10
4秒前
FashionBoy应助娜行采纳,获得10
5秒前
5秒前
传奇3应助后知后觉采纳,获得10
6秒前
6秒前
6秒前
科研通AI2S应助Chem is try采纳,获得10
6秒前
7秒前
a方舟发布了新的文献求助10
7秒前
寒冷书竹发布了新的文献求助10
7秒前
7秒前
hhh发布了新的文献求助10
7秒前
顾矜应助富婆嘉嘉子采纳,获得10
7秒前
7秒前
7秒前
8秒前
江风海韵完成签到,获得积分10
8秒前
火星上的从雪完成签到,获得积分10
8秒前
在水一方应助kai采纳,获得10
8秒前
打打应助留胡子的青柏采纳,获得10
9秒前
9秒前
zhanghw发布了新的文献求助10
9秒前
Frank完成签到,获得积分10
9秒前
桐桐应助小喵采纳,获得10
9秒前
香蕉觅云应助执笔客采纳,获得10
9秒前
light完成签到 ,获得积分10
9秒前
你仔细听完成签到,获得积分10
10秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672