Exploring intricate connectivity patterns for cognitive functioning and neurological disorders: incorporating frequency-domain NC method into fMRI analysis

功能磁共振成像 因果关系(物理学) 人类连接体项目 认知 人工智能 计算机科学 心理学 格兰杰因果关系 多元统计 频域 神经科学 认知心理学 机器学习 功能连接 物理 量子力学 计算机视觉
作者
Bocheng Wang
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:34 (5)
标识
DOI:10.1093/cercor/bhae195
摘要

Abstract This study extends the application of the frequency-domain new causality method to functional magnetic resonance imaging analysis. Strong causality, weak causality, balanced causality, cyclic causality, and transitivity causality were constructed to simulate varying degrees of causal associations among multivariate functional-magnetic-resonance-imaging blood-oxygen-level-dependent signals. Data from 1,252 groups of individuals with different degrees of cognitive impairment were collected. The frequency-domain new causality method was employed to construct directed efficient connectivity networks of the brain, analyze the statistical characteristics of topological variations in brain regions related to cognitive impairment, and utilize these characteristics as features for training a deep learning model. The results demonstrated that the frequency-domain new causality method accurately detected causal associations among simulated signals of different degrees. The deep learning tests also confirmed the superior performance of new causality, surpassing the other three methods in terms of accuracy, precision, and recall rates. Furthermore, consistent significant differences were observed in the brain efficiency networks, where several subregions defined by the multimodal parcellation method of Human Connectome Project simultaneously appeared in the topological statistical results of different patient groups. This suggests a significant association between these fine-grained cortical subregions, driven by multimodal data segmentation, and human cognitive function, making them potential biomarkers for further analysis of Alzheimer’s disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
严冥幽完成签到 ,获得积分10
1秒前
庆庆完成签到 ,获得积分10
1秒前
1秒前
1秒前
斯利美尔发布了新的文献求助10
2秒前
zd发布了新的文献求助10
2秒前
铁甲小宝发布了新的文献求助10
3秒前
LHH发布了新的文献求助10
3秒前
清脆平凡完成签到,获得积分10
4秒前
summer完成签到,获得积分0
4秒前
tingxiaomei完成签到,获得积分10
4秒前
XL发布了新的文献求助10
5秒前
月上半山发布了新的文献求助10
5秒前
5秒前
exile完成签到,获得积分10
5秒前
勤奋太君完成签到,获得积分10
5秒前
郭慢慢发布了新的文献求助10
5秒前
6秒前
阿翔发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助20
6秒前
学术女战士完成签到,获得积分10
6秒前
淡淡的雪完成签到,获得积分10
7秒前
7秒前
7秒前
zgrmws应助外向小猫咪采纳,获得10
7秒前
7秒前
8秒前
xubobo完成签到,获得积分10
8秒前
华仔应助花开不败采纳,获得10
8秒前
mistletoe完成签到,获得积分10
8秒前
领导范儿应助路远采纳,获得10
8秒前
曲少完成签到,获得积分10
8秒前
爆米花应助普鲁卡因采纳,获得10
8秒前
9秒前
子车茗应助孤独如曼采纳,获得20
10秒前
Daisy发布了新的文献求助10
10秒前
10秒前
小离心机完成签到,获得积分10
10秒前
NexusExplorer应助zd采纳,获得10
11秒前
开朗紫完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573881
求助须知:如何正确求助?哪些是违规求助? 4660158
关于积分的说明 14728086
捐赠科研通 4599956
什么是DOI,文献DOI怎么找? 2524610
邀请新用户注册赠送积分活动 1494975
关于科研通互助平台的介绍 1464997