Exploring intricate connectivity patterns for cognitive functioning and neurological disorders: incorporating frequency-domain NC method into fMRI analysis

功能磁共振成像 因果关系(物理学) 人类连接体项目 认知 人工智能 计算机科学 心理学 格兰杰因果关系 多元统计 频域 神经科学 认知心理学 机器学习 功能连接 物理 量子力学 计算机视觉
作者
Bocheng Wang
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:34 (5)
标识
DOI:10.1093/cercor/bhae195
摘要

Abstract This study extends the application of the frequency-domain new causality method to functional magnetic resonance imaging analysis. Strong causality, weak causality, balanced causality, cyclic causality, and transitivity causality were constructed to simulate varying degrees of causal associations among multivariate functional-magnetic-resonance-imaging blood-oxygen-level-dependent signals. Data from 1,252 groups of individuals with different degrees of cognitive impairment were collected. The frequency-domain new causality method was employed to construct directed efficient connectivity networks of the brain, analyze the statistical characteristics of topological variations in brain regions related to cognitive impairment, and utilize these characteristics as features for training a deep learning model. The results demonstrated that the frequency-domain new causality method accurately detected causal associations among simulated signals of different degrees. The deep learning tests also confirmed the superior performance of new causality, surpassing the other three methods in terms of accuracy, precision, and recall rates. Furthermore, consistent significant differences were observed in the brain efficiency networks, where several subregions defined by the multimodal parcellation method of Human Connectome Project simultaneously appeared in the topological statistical results of different patient groups. This suggests a significant association between these fine-grained cortical subregions, driven by multimodal data segmentation, and human cognitive function, making them potential biomarkers for further analysis of Alzheimer’s disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到,获得积分10
1秒前
hhhhhhhhhhh完成签到,获得积分10
2秒前
c2h4完成签到,获得积分20
2秒前
sunqiming完成签到,获得积分10
3秒前
smile完成签到,获得积分10
3秒前
3秒前
马小翠发布了新的文献求助30
3秒前
鲤鱼依白发布了新的文献求助10
4秒前
yeyuan1017完成签到,获得积分10
4秒前
5秒前
6秒前
Ava应助雨季采纳,获得10
8秒前
传奇3应助美丽的依霜采纳,获得10
8秒前
fuxiao完成签到 ,获得积分10
9秒前
9秒前
彭于晏应助鲤鱼依白采纳,获得10
9秒前
王了了发布了新的文献求助10
10秒前
俭朴的雅彤完成签到,获得积分10
11秒前
12秒前
id完成签到,获得积分10
12秒前
12秒前
汉堡包应助笑嘻嘻采纳,获得10
12秒前
13秒前
观自在完成签到 ,获得积分10
13秒前
马小翠完成签到,获得积分10
13秒前
pp完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
情怀应助Lin采纳,获得10
16秒前
16秒前
16秒前
菠萝蜜滴哒完成签到,获得积分10
16秒前
QNDXX发布了新的文献求助10
17秒前
10711发布了新的文献求助10
17秒前
在水一方应助22222采纳,获得30
17秒前
18秒前
18秒前
wqq发布了新的文献求助10
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155593
求助须知:如何正确求助?哪些是违规求助? 2806820
关于积分的说明 7870825
捐赠科研通 2465126
什么是DOI,文献DOI怎么找? 1312144
科研通“疑难数据库(出版商)”最低求助积分说明 629889
版权声明 601892