Applications of structural equation modeling in plant functional trait research

结构方程建模 特质 生态学 生物 心理学 计量经济学 生物系统 环境科学 计算机科学 数学 统计 程序设计语言
作者
Yihang Zhu,Liu Cong,Changhui Peng,Xiaolu Zhou,Binggeng Xie,Tong Li,Peng Li,Ziying Zou,Jiayi Tang,Zelin Liu
出处
期刊:Environmental Reviews [Canadian Science Publishing]
标识
DOI:10.1139/er-2023-0128
摘要

(1) Plant functional traits, which encompass morphological, physiological, and ecological characteristics, are key to plant adaptation, growth, and development. In recent years, the structural equation model (SEM) has gained widespread use as a powerful statistical tool for studying plant functional traits and conducting research in this field. Its ability to distinguish between direct and indirect effects makes the SEM a robust method for investigating the complex relationships among environment components, traits, and ecosystem functions. (2) Here, we review and discuss four commonly used SEMs: (1) the covariance-based structural equation model, (2) the piecewise structural equation model, (3) the Bayesian structural equation model, and (4) the partial least squares structural equation model. We also explore their applications in three typical ecosystems—forest, grassland, and wetland ecosystems—and investigate these forms of SEM in the context of their use in trait-ecosystem function research. 3. Our specific objectives were to: (i) compare the advantages and disadvantages of these four types of SEMs; (ii) analyze the current state of research on SEM applications in plant functional traits across diverse ecosystems; and (iii) highlight new approaches and potential research areas for the future application of SEM in plant functional traits. 4. In this paper, several key findings were obtained: (i) the selection of SEM type is influenced by the different spatial scales of the study; (ii) latent and composite variables were less commonly utilized in recent SEM studies; and (iii) while SEMs have proven effective in distinguishing between direct and indirect effects to unravel the complex relationships among multiple variables, indirect effects deserve more attention in general studies. We propose that future applications of SEMs in plant functional traits should incorporate a broader spectrum of traits as well as the trade-offs between them. Larger and more diverse databases of plant functional traits would help make SEM analyses more accurate across different scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助Khr1stINK采纳,获得10
刚刚
傲娇的凡旋应助小周采纳,获得10
1秒前
潇潇潇完成签到 ,获得积分10
1秒前
2秒前
英俊的铭应助XShu采纳,获得10
3秒前
Hello应助一只大肥猫采纳,获得10
4秒前
allyceacheng完成签到,获得积分10
4秒前
科研通AI5应助phd采纳,获得10
5秒前
5秒前
WTaMi完成签到 ,获得积分10
5秒前
zoe发布了新的文献求助10
5秒前
Owen应助无奈的酒窝采纳,获得10
6秒前
7秒前
9秒前
9秒前
9秒前
科研通AI5应助wangyanwxy采纳,获得10
10秒前
36456657应助豆dou采纳,获得10
10秒前
11秒前
11秒前
12秒前
buno应助jy采纳,获得10
13秒前
paparazzi221发布了新的文献求助10
14秒前
田生完成签到,获得积分10
14秒前
勤劳的忆寒应助Kiyotaka采纳,获得30
14秒前
14秒前
爆米花应助towerman采纳,获得10
15秒前
羊笨笨完成签到 ,获得积分10
15秒前
16秒前
光亮芷天完成签到,获得积分10
16秒前
16秒前
17秒前
粗犷的问夏完成签到,获得积分10
18秒前
知行合一完成签到 ,获得积分10
19秒前
19秒前
20秒前
李爱国应助晨曦采纳,获得10
21秒前
0128lun发布了新的文献求助10
21秒前
phd发布了新的文献求助10
22秒前
君无名完成签到 ,获得积分10
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808