A whole-slide foundation model for digital pathology from real-world data

数字化病理学 计算机科学 基础(证据) 数据科学 病理 医学 考古 地理
作者
Hanwen Xu,Naoto Usuyama,Jaspreet Bagga,Sheng Zhang,Rajesh C. Rao,Tristan Naumann,Cliff Wong,Zelalem Gero,Javier González,裕二 池谷,XU Yan-bo,Mu Wei,Wenhui Wang,Shuming Ma,Furu Wei,Jianwei Yang,Chunyuan Li,Jianfeng Gao,Jaylen Rosemon,T. G. R. Bower
出处
期刊:Nature [Springer Nature]
卷期号:630 (8015): 181-188 被引量:77
标识
DOI:10.1038/s41586-024-07441-w
摘要

Abstract Digital pathology poses unique computational challenges, as a standard gigapixel slide may comprise tens of thousands of image tiles 1–3 . Prior models have often resorted to subsampling a small portion of tiles for each slide, thus missing the important slide-level context 4 . Here we present Prov-GigaPath, a whole-slide pathology foundation model pretrained on 1.3 billion 256 × 256 pathology image tiles in 171,189 whole slides from Providence, a large US health network comprising 28 cancer centres. The slides originated from more than 30,000 patients covering 31 major tissue types. To pretrain Prov-GigaPath, we propose GigaPath, a novel vision transformer architecture for pretraining gigapixel pathology slides. To scale GigaPath for slide-level learning with tens of thousands of image tiles, GigaPath adapts the newly developed LongNet 5 method to digital pathology. To evaluate Prov-GigaPath, we construct a digital pathology benchmark comprising 9 cancer subtyping tasks and 17 pathomics tasks, using both Providence and TCGA data 6 . With large-scale pretraining and ultra-large-context modelling, Prov-GigaPath attains state-of-the-art performance on 25 out of 26 tasks, with significant improvement over the second-best method on 18 tasks. We further demonstrate the potential of Prov-GigaPath on vision–language pretraining for pathology 7,8 by incorporating the pathology reports. In sum, Prov-GigaPath is an open-weight foundation model that achieves state-of-the-art performance on various digital pathology tasks, demonstrating the importance of real-world data and whole-slide modelling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kxy完成签到,获得积分10
2秒前
2秒前
婧婧完成签到 ,获得积分10
2秒前
3秒前
4秒前
左友铭完成签到 ,获得积分10
4秒前
sweetbearm应助通~采纳,获得10
4秒前
AKLIZE完成签到,获得积分10
4秒前
刘大妮完成签到,获得积分10
5秒前
clean完成签到,获得积分20
6秒前
Lucas发布了新的文献求助10
6秒前
6秒前
朴实以松发布了新的文献求助10
6秒前
感谢橘子转发科研通微信,获得积分50
6秒前
围炉煮茶完成签到,获得积分10
7秒前
7秒前
云锋发布了新的文献求助10
8秒前
兴奋的问旋应助务实盼海采纳,获得10
8秒前
李秋静发布了新的文献求助10
8秒前
8秒前
无花果应助cookie采纳,获得10
9秒前
9秒前
斯文败类应助阳尧采纳,获得10
9秒前
10秒前
10秒前
abjz完成签到,获得积分10
10秒前
三千弱水为君饮完成签到,获得积分10
11秒前
11秒前
cata完成签到,获得积分10
11秒前
感谢79转发科研通微信,获得积分50
11秒前
11秒前
troubadourelf发布了新的文献求助10
12秒前
frank发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
感谢超帅冬易转发科研通微信,获得积分50
15秒前
15秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794