UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration

人工智能 对抗制 像素 计算机视觉 计算机科学 图像(数学) 模式识别(心理学)
作者
Nachuan Ma,Rui Fan,Lihua Xie
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 13926-13936 被引量:5
标识
DOI:10.1109/tits.2024.3398037
摘要

Over the past decade, automated methods have been developed to detect cracks more efficiently, accurately, and objectively, with the ultimate goal of replacing conventional manual visual inspection techniques. Among these methods, semantic segmentation algorithms have demonstrated promising results in pixel-wise crack detection tasks. However, training such networks requires a large amount of human-annotated datasets with pixel-level annotations, which is a highly labor-intensive and time-consuming process. Moreover, supervised learning-based methods often struggle with poor generalizability in unseen datasets. Therefore, we propose an unsupervised pixel-wise road crack detection network, known as UP-CrackNet. Our approach first generates multi-scale square masks and randomly selects them to corrupt undamaged road images by removing certain regions. Subsequently, a generative adversarial network is trained to restore the corrupted regions by leveraging the semantic context learned from surrounding uncorrupted regions. During the testing phase, an error map is generated by calculating the difference between the input and restored images, which allows for pixel-wise crack detection. Our comprehensive experimental results demonstrate that UP-CrackNet outperforms other general-purpose unsupervised anomaly detection algorithms, and exhibits satisfactory performance and superior generalizability when compared with state-of-the-art supervised crack segmentation algorithms. Our source code is publicly available at mias.group/UP-CrackNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww完成签到 ,获得积分10
刚刚
魏家乐发布了新的文献求助10
刚刚
共享精神应助稳重的雅绿采纳,获得10
刚刚
桐桐应助li采纳,获得10
刚刚
hellojwx完成签到,获得积分10
1秒前
NexusExplorer应助isabelwy采纳,获得10
2秒前
烂漫纲完成签到,获得积分10
2秒前
嘎嘎完成签到,获得积分10
2秒前
L1995完成签到,获得积分10
2秒前
2秒前
2秒前
11完成签到,获得积分10
2秒前
爆米花应助梦想里采纳,获得10
2秒前
3秒前
3秒前
CeciliaLee发布了新的文献求助10
3秒前
4秒前
闪闪的正豪完成签到,获得积分10
4秒前
myheat完成签到,获得积分10
5秒前
勤奋安波完成签到,获得积分10
5秒前
安安发布了新的文献求助10
5秒前
Amazing_p完成签到,获得积分10
5秒前
5秒前
5秒前
张千万完成签到,获得积分10
6秒前
11发布了新的文献求助40
6秒前
西西完成签到,获得积分10
7秒前
QWE发布了新的文献求助10
7秒前
Jian发布了新的文献求助10
7秒前
笨维发布了新的文献求助10
7秒前
7秒前
好多鱼爱学习完成签到 ,获得积分10
7秒前
屈昭阳发布了新的文献求助10
8秒前
baobaoxiong完成签到,获得积分10
8秒前
8秒前
8秒前
蒋若风发布了新的文献求助10
8秒前
9秒前
songyk完成签到,获得积分10
9秒前
zhoumin完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836