亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration

人工智能 对抗制 像素 计算机视觉 计算机科学 图像(数学) 模式识别(心理学)
作者
Nachuan Ma,Rui Fan,Lihua Xie
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 13926-13936 被引量:5
标识
DOI:10.1109/tits.2024.3398037
摘要

Over the past decade, automated methods have been developed to detect cracks more efficiently, accurately, and objectively, with the ultimate goal of replacing conventional manual visual inspection techniques. Among these methods, semantic segmentation algorithms have demonstrated promising results in pixel-wise crack detection tasks. However, training such networks requires a large amount of human-annotated datasets with pixel-level annotations, which is a highly labor-intensive and time-consuming process. Moreover, supervised learning-based methods often struggle with poor generalizability in unseen datasets. Therefore, we propose an unsupervised pixel-wise road crack detection network, known as UP-CrackNet. Our approach first generates multi-scale square masks and randomly selects them to corrupt undamaged road images by removing certain regions. Subsequently, a generative adversarial network is trained to restore the corrupted regions by leveraging the semantic context learned from surrounding uncorrupted regions. During the testing phase, an error map is generated by calculating the difference between the input and restored images, which allows for pixel-wise crack detection. Our comprehensive experimental results demonstrate that UP-CrackNet outperforms other general-purpose unsupervised anomaly detection algorithms, and exhibits satisfactory performance and superior generalizability when compared with state-of-the-art supervised crack segmentation algorithms. Our source code is publicly available at mias.group/UP-CrackNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早川完成签到,获得积分10
26秒前
26秒前
科研通AI2S应助魏欣娜采纳,获得10
28秒前
可爱的函函应助早川采纳,获得10
34秒前
馍夹菜完成签到,获得积分10
34秒前
38秒前
52秒前
Vivian发布了新的文献求助30
57秒前
Fox完成签到,获得积分10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
维颖完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
zhvjdb发布了新的文献求助10
1分钟前
Raju发布了新的文献求助100
1分钟前
英姑应助lpy李采纳,获得10
1分钟前
1分钟前
zhvjdb完成签到,获得积分10
1分钟前
Yuuw发布了新的文献求助10
1分钟前
bastien驳回了xxfsx应助
1分钟前
1分钟前
1分钟前
Huzhu应助魏欣娜采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
Yuuw完成签到,获得积分10
1分钟前
1分钟前
Sherry发布了新的文献求助20
2分钟前
充电宝应助青柠采纳,获得10
2分钟前
科研通AI2S应助魏欣娜采纳,获得10
2分钟前
2分钟前
2分钟前
33发布了新的文献求助10
2分钟前
2分钟前
田様应助yydcmnyxx采纳,获得30
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482307
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388883
捐赠科研通 4512205
什么是DOI,文献DOI怎么找? 2472753
邀请新用户注册赠送积分活动 1459020
关于科研通互助平台的介绍 1432430