UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration

人工智能 对抗制 像素 计算机视觉 计算机科学 图像(数学) 模式识别(心理学)
作者
Nachuan Ma,Rui Fan,Lihua Xie
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 13926-13936 被引量:5
标识
DOI:10.1109/tits.2024.3398037
摘要

Over the past decade, automated methods have been developed to detect cracks more efficiently, accurately, and objectively, with the ultimate goal of replacing conventional manual visual inspection techniques. Among these methods, semantic segmentation algorithms have demonstrated promising results in pixel-wise crack detection tasks. However, training such networks requires a large amount of human-annotated datasets with pixel-level annotations, which is a highly labor-intensive and time-consuming process. Moreover, supervised learning-based methods often struggle with poor generalizability in unseen datasets. Therefore, we propose an unsupervised pixel-wise road crack detection network, known as UP-CrackNet. Our approach first generates multi-scale square masks and randomly selects them to corrupt undamaged road images by removing certain regions. Subsequently, a generative adversarial network is trained to restore the corrupted regions by leveraging the semantic context learned from surrounding uncorrupted regions. During the testing phase, an error map is generated by calculating the difference between the input and restored images, which allows for pixel-wise crack detection. Our comprehensive experimental results demonstrate that UP-CrackNet outperforms other general-purpose unsupervised anomaly detection algorithms, and exhibits satisfactory performance and superior generalizability when compared with state-of-the-art supervised crack segmentation algorithms. Our source code is publicly available at mias.group/UP-CrackNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111111111完成签到,获得积分10
刚刚
黑芝麻丸关注了科研通微信公众号
刚刚
刚刚
lds发布了新的文献求助10
1秒前
美好眼神完成签到,获得积分10
2秒前
粗心的忆山完成签到,获得积分10
2秒前
lp完成签到,获得积分10
2秒前
2秒前
3秒前
ppat5012完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
跋扈完成签到,获得积分10
4秒前
孟严青完成签到,获得积分0
4秒前
小白完成签到,获得积分10
4秒前
illusion2019举报认真的恶天求助涉嫌违规
4秒前
4秒前
4秒前
傅逊完成签到,获得积分10
4秒前
Criminology34应助动听衬衫采纳,获得80
5秒前
仙峰水龙发布了新的文献求助10
5秒前
苹果萧完成签到 ,获得积分10
5秒前
5秒前
超帅沂发布了新的文献求助10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
yu202408应助科研通管家采纳,获得20
6秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
Mint完成签到,获得积分10
6秒前
star应助科研通管家采纳,获得10
6秒前
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
霸气白卉完成签到 ,获得积分10
6秒前
JamesPei应助科研通管家采纳,获得10
6秒前
为不争完成签到,获得积分10
6秒前
7秒前
雾草生发布了新的文献求助10
7秒前
7秒前
苹果完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315937
求助须知:如何正确求助?哪些是违规求助? 4458488
关于积分的说明 13870596
捐赠科研通 4348245
什么是DOI,文献DOI怎么找? 2388169
邀请新用户注册赠送积分活动 1382240
关于科研通互助平台的介绍 1351627