亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration

人工智能 对抗制 像素 计算机视觉 计算机科学 图像(数学) 模式识别(心理学)
作者
Nachuan Ma,Rui Fan,Lihua Xie
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 13926-13936 被引量:5
标识
DOI:10.1109/tits.2024.3398037
摘要

Over the past decade, automated methods have been developed to detect cracks more efficiently, accurately, and objectively, with the ultimate goal of replacing conventional manual visual inspection techniques. Among these methods, semantic segmentation algorithms have demonstrated promising results in pixel-wise crack detection tasks. However, training such networks requires a large amount of human-annotated datasets with pixel-level annotations, which is a highly labor-intensive and time-consuming process. Moreover, supervised learning-based methods often struggle with poor generalizability in unseen datasets. Therefore, we propose an unsupervised pixel-wise road crack detection network, known as UP-CrackNet. Our approach first generates multi-scale square masks and randomly selects them to corrupt undamaged road images by removing certain regions. Subsequently, a generative adversarial network is trained to restore the corrupted regions by leveraging the semantic context learned from surrounding uncorrupted regions. During the testing phase, an error map is generated by calculating the difference between the input and restored images, which allows for pixel-wise crack detection. Our comprehensive experimental results demonstrate that UP-CrackNet outperforms other general-purpose unsupervised anomaly detection algorithms, and exhibits satisfactory performance and superior generalizability when compared with state-of-the-art supervised crack segmentation algorithms. Our source code is publicly available at mias.group/UP-CrackNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助激昂的如柏采纳,获得10
1秒前
ttimmy完成签到,获得积分10
2秒前
6秒前
20秒前
小二完成签到,获得积分10
28秒前
研友_VZG7GZ应助激昂的如柏采纳,获得10
31秒前
32秒前
佛光辉发布了新的文献求助10
37秒前
38秒前
39秒前
39秒前
科研通AI6应助科研通管家采纳,获得10
40秒前
40秒前
null应助科研通管家采纳,获得10
40秒前
小蘑菇应助科研菜鸡采纳,获得10
41秒前
45秒前
45秒前
Elaine发布了新的文献求助30
45秒前
sachiko关注了科研通微信公众号
45秒前
研友_Z3vN0n完成签到,获得积分10
1分钟前
1分钟前
sachiko发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Hello应助ytc采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
bingbing完成签到,获得积分10
2分钟前
2分钟前
Elaine完成签到,获得积分10
2分钟前
tingalan完成签到,获得积分0
2分钟前
wanci应助务实的翠风采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
阿俊完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739528
求助须知:如何正确求助?哪些是违规求助? 5387168
关于积分的说明 15339759
捐赠科研通 4882026
什么是DOI,文献DOI怎么找? 2624099
邀请新用户注册赠送积分活动 1572789
关于科研通互助平台的介绍 1529589