亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration

人工智能 对抗制 像素 计算机视觉 计算机科学 图像(数学) 模式识别(心理学)
作者
Nachuan Ma,Rui Fan,Lihua Xie
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 13926-13936 被引量:5
标识
DOI:10.1109/tits.2024.3398037
摘要

Over the past decade, automated methods have been developed to detect cracks more efficiently, accurately, and objectively, with the ultimate goal of replacing conventional manual visual inspection techniques. Among these methods, semantic segmentation algorithms have demonstrated promising results in pixel-wise crack detection tasks. However, training such networks requires a large amount of human-annotated datasets with pixel-level annotations, which is a highly labor-intensive and time-consuming process. Moreover, supervised learning-based methods often struggle with poor generalizability in unseen datasets. Therefore, we propose an unsupervised pixel-wise road crack detection network, known as UP-CrackNet. Our approach first generates multi-scale square masks and randomly selects them to corrupt undamaged road images by removing certain regions. Subsequently, a generative adversarial network is trained to restore the corrupted regions by leveraging the semantic context learned from surrounding uncorrupted regions. During the testing phase, an error map is generated by calculating the difference between the input and restored images, which allows for pixel-wise crack detection. Our comprehensive experimental results demonstrate that UP-CrackNet outperforms other general-purpose unsupervised anomaly detection algorithms, and exhibits satisfactory performance and superior generalizability when compared with state-of-the-art supervised crack segmentation algorithms. Our source code is publicly available at mias.group/UP-CrackNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
pojian完成签到,获得积分10
3秒前
3秒前
和谐续完成签到 ,获得积分10
7秒前
12秒前
心若向阳完成签到,获得积分10
16秒前
22秒前
25秒前
TearMarks发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
27秒前
29秒前
30秒前
李爱国应助天真的大白菜采纳,获得10
30秒前
WUHUIWEN完成签到,获得积分10
30秒前
31秒前
32秒前
Vision820完成签到,获得积分10
34秒前
zzq发布了新的文献求助10
36秒前
充电宝应助摆渡人采纳,获得10
39秒前
千纸鹤完成签到 ,获得积分10
43秒前
传奇3应助科研通管家采纳,获得10
48秒前
烟花应助科研通管家采纳,获得10
48秒前
Kongstrue完成签到,获得积分10
50秒前
研友_LaOyQZ完成签到,获得积分10
53秒前
57秒前
蔚欢完成签到 ,获得积分10
59秒前
andrele发布了新的文献求助10
1分钟前
1分钟前
1分钟前
丘比特应助优美一曲采纳,获得10
1分钟前
Kongstrue发布了新的文献求助10
1分钟前
哈哈哈哈发布了新的文献求助10
1分钟前
YOLO完成签到,获得积分20
1分钟前
andrele发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
李末完成签到 ,获得积分10
1分钟前
1分钟前
优美一曲发布了新的文献求助10
1分钟前
kdjm688发布了新的文献求助10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976608
求助须知:如何正确求助?哪些是违规求助? 3520720
关于积分的说明 11204567
捐赠科研通 3257359
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613