UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration

人工智能 对抗制 像素 计算机视觉 计算机科学 图像(数学) 模式识别(心理学)
作者
Nachuan Ma,Rui Fan,Lihua Xie
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 13926-13936
标识
DOI:10.1109/tits.2024.3398037
摘要

Over the past decade, automated methods have been developed to detect cracks more efficiently, accurately, and objectively, with the ultimate goal of replacing conventional manual visual inspection techniques. Among these methods, semantic segmentation algorithms have demonstrated promising results in pixel-wise crack detection tasks. However, training such networks requires a large amount of human-annotated datasets with pixel-level annotations, which is a highly labor-intensive and time-consuming process. Moreover, supervised learning-based methods often struggle with poor generalizability in unseen datasets. Therefore, we propose an unsupervised pixel-wise road crack detection network, known as UP-CrackNet. Our approach first generates multi-scale square masks and randomly selects them to corrupt undamaged road images by removing certain regions. Subsequently, a generative adversarial network is trained to restore the corrupted regions by leveraging the semantic context learned from surrounding uncorrupted regions. During the testing phase, an error map is generated by calculating the difference between the input and restored images, which allows for pixel-wise crack detection. Our comprehensive experimental results demonstrate that UP-CrackNet outperforms other general-purpose unsupervised anomaly detection algorithms, and exhibits satisfactory performance and superior generalizability when compared with state-of-the-art supervised crack segmentation algorithms. Our source code is publicly available at mias.group/UP-CrackNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈白亦完成签到,获得积分10
刚刚
张亚慧完成签到 ,获得积分10
刚刚
dora发布了新的文献求助10
刚刚
4秒前
5秒前
学不完了发布了新的文献求助20
5秒前
5秒前
大方颦完成签到 ,获得积分20
6秒前
6秒前
7秒前
丘比特应助熊大采纳,获得10
7秒前
Jingg完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
qqa发布了新的文献求助10
10秒前
HCLonely应助jzy采纳,获得10
12秒前
万海完成签到,获得积分10
12秒前
YE发布了新的文献求助10
14秒前
14秒前
情怀应助zougen采纳,获得10
15秒前
16秒前
17秒前
可爱的函函应助吐司匹林采纳,获得10
17秒前
科目三应助科研小白采纳,获得10
17秒前
CodeCraft应助gc采纳,获得10
17秒前
Farrah发布了新的文献求助10
18秒前
毛毛完成签到,获得积分10
19秒前
斯文败类应助学不完了采纳,获得10
19秒前
小思完成签到 ,获得积分10
19秒前
梁梁发布了新的文献求助10
20秒前
852应助快乐仙知采纳,获得10
20秒前
20秒前
20秒前
zzzcxxx发布了新的文献求助10
21秒前
21秒前
21秒前
21秒前
天雨友人完成签到,获得积分10
22秒前
NoELeft完成签到,获得积分10
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231365
求助须知:如何正确求助?哪些是违规求助? 2878512
关于积分的说明 8206452
捐赠科研通 2545921
什么是DOI,文献DOI怎么找? 1375527
科研通“疑难数据库(出版商)”最低求助积分说明 647410
邀请新用户注册赠送积分活动 622508