UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration

人工智能 对抗制 像素 计算机视觉 计算机科学 图像(数学) 模式识别(心理学)
作者
Nachuan Ma,Rui Fan,Lihua Xie
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 13926-13936 被引量:5
标识
DOI:10.1109/tits.2024.3398037
摘要

Over the past decade, automated methods have been developed to detect cracks more efficiently, accurately, and objectively, with the ultimate goal of replacing conventional manual visual inspection techniques. Among these methods, semantic segmentation algorithms have demonstrated promising results in pixel-wise crack detection tasks. However, training such networks requires a large amount of human-annotated datasets with pixel-level annotations, which is a highly labor-intensive and time-consuming process. Moreover, supervised learning-based methods often struggle with poor generalizability in unseen datasets. Therefore, we propose an unsupervised pixel-wise road crack detection network, known as UP-CrackNet. Our approach first generates multi-scale square masks and randomly selects them to corrupt undamaged road images by removing certain regions. Subsequently, a generative adversarial network is trained to restore the corrupted regions by leveraging the semantic context learned from surrounding uncorrupted regions. During the testing phase, an error map is generated by calculating the difference between the input and restored images, which allows for pixel-wise crack detection. Our comprehensive experimental results demonstrate that UP-CrackNet outperforms other general-purpose unsupervised anomaly detection algorithms, and exhibits satisfactory performance and superior generalizability when compared with state-of-the-art supervised crack segmentation algorithms. Our source code is publicly available at mias.group/UP-CrackNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助junge采纳,获得10
1秒前
飞翔的西红柿完成签到,获得积分10
2秒前
4秒前
sophiechen027完成签到,获得积分10
4秒前
4秒前
bkagyin应助忧心的白开水采纳,获得10
7秒前
7秒前
sophiechen027发布了新的文献求助20
7秒前
lobule完成签到,获得积分10
9秒前
Chief完成签到,获得积分0
11秒前
量子星尘发布了新的文献求助10
11秒前
weiwei发布了新的文献求助10
11秒前
qh完成签到,获得积分10
11秒前
lobule发布了新的文献求助10
13秒前
orixero应助高天采纳,获得10
13秒前
14秒前
dreamvssnow完成签到 ,获得积分10
16秒前
研友_VZG7GZ应助谦让又琴采纳,获得10
17秒前
星期三的摸鱼怪完成签到 ,获得积分10
17秒前
18秒前
21秒前
21秒前
23秒前
23秒前
weiwei完成签到,获得积分10
25秒前
yznfly应助sophiechen027采纳,获得20
26秒前
耿耿发布了新的文献求助10
27秒前
30秒前
Amelk发布了新的文献求助10
30秒前
摩天轮完成签到 ,获得积分10
30秒前
30秒前
binshier完成签到,获得积分10
32秒前
Djdidn发布了新的文献求助10
32秒前
33秒前
34秒前
光源处发布了新的文献求助10
35秒前
35秒前
TARS发布了新的文献求助10
38秒前
39秒前
一一发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5602044
求助须知:如何正确求助?哪些是违规求助? 4687349
关于积分的说明 14848625
捐赠科研通 4682785
什么是DOI,文献DOI怎么找? 2539689
邀请新用户注册赠送积分活动 1506443
关于科研通互助平台的介绍 1471366