UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration

人工智能 对抗制 像素 计算机视觉 计算机科学 图像(数学) 模式识别(心理学)
作者
Nachuan Ma,Rui Fan,Lihua Xie
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 13926-13936 被引量:5
标识
DOI:10.1109/tits.2024.3398037
摘要

Over the past decade, automated methods have been developed to detect cracks more efficiently, accurately, and objectively, with the ultimate goal of replacing conventional manual visual inspection techniques. Among these methods, semantic segmentation algorithms have demonstrated promising results in pixel-wise crack detection tasks. However, training such networks requires a large amount of human-annotated datasets with pixel-level annotations, which is a highly labor-intensive and time-consuming process. Moreover, supervised learning-based methods often struggle with poor generalizability in unseen datasets. Therefore, we propose an unsupervised pixel-wise road crack detection network, known as UP-CrackNet. Our approach first generates multi-scale square masks and randomly selects them to corrupt undamaged road images by removing certain regions. Subsequently, a generative adversarial network is trained to restore the corrupted regions by leveraging the semantic context learned from surrounding uncorrupted regions. During the testing phase, an error map is generated by calculating the difference between the input and restored images, which allows for pixel-wise crack detection. Our comprehensive experimental results demonstrate that UP-CrackNet outperforms other general-purpose unsupervised anomaly detection algorithms, and exhibits satisfactory performance and superior generalizability when compared with state-of-the-art supervised crack segmentation algorithms. Our source code is publicly available at mias.group/UP-CrackNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Oliver完成签到 ,获得积分10
1秒前
自信鞯完成签到,获得积分10
1秒前
1秒前
1秒前
ljh发布了新的文献求助10
1秒前
忐忑的黄豆完成签到,获得积分10
3秒前
fionadong发布了新的文献求助10
3秒前
汉堡包应助坚果采纳,获得10
3秒前
3秒前
3秒前
breeze发布了新的文献求助10
4秒前
善学以致用应助小雨采纳,获得10
4秒前
chx123发布了新的文献求助10
4秒前
xixi发布了新的文献求助10
5秒前
小付发布了新的文献求助10
5秒前
Oscillator发布了新的文献求助10
6秒前
笛在月明楼完成签到,获得积分10
6秒前
Dr终年完成签到,获得积分10
7秒前
俞晓发布了新的文献求助10
7秒前
7秒前
cw发布了新的文献求助10
7秒前
7秒前
风趣惜灵完成签到,获得积分10
8秒前
酷波er应助12345采纳,获得10
8秒前
9秒前
屈屈发布了新的文献求助50
9秒前
小号完成签到,获得积分10
10秒前
洋溢发布了新的文献求助10
10秒前
11秒前
善学以致用应助Eric_chao采纳,获得10
11秒前
11秒前
香蕉静芙完成签到 ,获得积分10
12秒前
在水一方应助迪迪张采纳,获得10
12秒前
深情安青应助小付采纳,获得10
12秒前
天天快乐应助Cc采纳,获得10
12秒前
饱了饱了发布了新的文献求助10
12秒前
12秒前
12秒前
无语的雪冥完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601362
求助须知:如何正确求助?哪些是违规求助? 4686881
关于积分的说明 14846604
捐赠科研通 4680822
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506197
关于科研通互助平台的介绍 1471293