UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration

人工智能 对抗制 像素 计算机视觉 计算机科学 图像(数学) 模式识别(心理学)
作者
Nachuan Ma,Rui Fan,Lihua Xie
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 13926-13936 被引量:5
标识
DOI:10.1109/tits.2024.3398037
摘要

Over the past decade, automated methods have been developed to detect cracks more efficiently, accurately, and objectively, with the ultimate goal of replacing conventional manual visual inspection techniques. Among these methods, semantic segmentation algorithms have demonstrated promising results in pixel-wise crack detection tasks. However, training such networks requires a large amount of human-annotated datasets with pixel-level annotations, which is a highly labor-intensive and time-consuming process. Moreover, supervised learning-based methods often struggle with poor generalizability in unseen datasets. Therefore, we propose an unsupervised pixel-wise road crack detection network, known as UP-CrackNet. Our approach first generates multi-scale square masks and randomly selects them to corrupt undamaged road images by removing certain regions. Subsequently, a generative adversarial network is trained to restore the corrupted regions by leveraging the semantic context learned from surrounding uncorrupted regions. During the testing phase, an error map is generated by calculating the difference between the input and restored images, which allows for pixel-wise crack detection. Our comprehensive experimental results demonstrate that UP-CrackNet outperforms other general-purpose unsupervised anomaly detection algorithms, and exhibits satisfactory performance and superior generalizability when compared with state-of-the-art supervised crack segmentation algorithms. Our source code is publicly available at mias.group/UP-CrackNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Maestro_S完成签到,获得积分0
4秒前
JOY完成签到 ,获得积分10
5秒前
dream完成签到 ,获得积分10
5秒前
偷得浮生半日闲完成签到,获得积分10
8秒前
小蘑菇应助无语的音响采纳,获得10
10秒前
14秒前
章诚完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
17秒前
辛勤的泽洋完成签到 ,获得积分10
27秒前
ZZzz完成签到 ,获得积分10
29秒前
荔枝恩完成签到 ,获得积分10
35秒前
量子星尘发布了新的文献求助10
36秒前
37秒前
h w wang完成签到,获得积分10
40秒前
xixi很困发布了新的文献求助10
40秒前
飞鱼完成签到 ,获得积分10
41秒前
medai完成签到 ,获得积分10
43秒前
白华苍松发布了新的文献求助20
44秒前
芝诺的乌龟完成签到 ,获得积分0
45秒前
45秒前
Mason完成签到,获得积分10
46秒前
123发布了新的文献求助10
49秒前
melisa完成签到,获得积分10
50秒前
xixi很困完成签到,获得积分10
50秒前
顺利的雁梅完成签到 ,获得积分10
54秒前
在水一方应助pH7采纳,获得10
55秒前
55秒前
量子星尘发布了新的文献求助10
56秒前
57秒前
ava完成签到,获得积分10
57秒前
机智二次元完成签到,获得积分20
58秒前
weng完成签到,获得积分10
58秒前
包包琪完成签到 ,获得积分10
59秒前
xmqaq完成签到,获得积分10
1分钟前
五月完成签到 ,获得积分10
1分钟前
1分钟前
喵喵完成签到 ,获得积分10
1分钟前
青黛完成签到 ,获得积分10
1分钟前
Sofia完成签到 ,获得积分0
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584832
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771673
捐赠科研通 4615766
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590