已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration

人工智能 对抗制 像素 计算机视觉 计算机科学 图像(数学) 模式识别(心理学)
作者
Nachuan Ma,Rui Fan,Lihua Xie
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 13926-13936 被引量:5
标识
DOI:10.1109/tits.2024.3398037
摘要

Over the past decade, automated methods have been developed to detect cracks more efficiently, accurately, and objectively, with the ultimate goal of replacing conventional manual visual inspection techniques. Among these methods, semantic segmentation algorithms have demonstrated promising results in pixel-wise crack detection tasks. However, training such networks requires a large amount of human-annotated datasets with pixel-level annotations, which is a highly labor-intensive and time-consuming process. Moreover, supervised learning-based methods often struggle with poor generalizability in unseen datasets. Therefore, we propose an unsupervised pixel-wise road crack detection network, known as UP-CrackNet. Our approach first generates multi-scale square masks and randomly selects them to corrupt undamaged road images by removing certain regions. Subsequently, a generative adversarial network is trained to restore the corrupted regions by leveraging the semantic context learned from surrounding uncorrupted regions. During the testing phase, an error map is generated by calculating the difference between the input and restored images, which allows for pixel-wise crack detection. Our comprehensive experimental results demonstrate that UP-CrackNet outperforms other general-purpose unsupervised anomaly detection algorithms, and exhibits satisfactory performance and superior generalizability when compared with state-of-the-art supervised crack segmentation algorithms. Our source code is publicly available at mias.group/UP-CrackNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘观海完成签到 ,获得积分10
刚刚
1秒前
4秒前
6秒前
不能随便完成签到,获得积分10
10秒前
sherry发布了新的文献求助10
13秒前
跳跃的鹏飞完成签到 ,获得积分0
13秒前
18秒前
JamesPei应助sherry采纳,获得10
18秒前
111发布了新的文献求助10
18秒前
蜡笔小新完成签到,获得积分20
20秒前
Jasper应助MrZhZh采纳,获得10
22秒前
22秒前
丰富的冰烟完成签到,获得积分10
23秒前
zhangjw完成签到 ,获得积分10
26秒前
矜天完成签到 ,获得积分10
26秒前
redstone完成签到,获得积分10
28秒前
请你吃欧润橘完成签到,获得积分10
29秒前
hahahan完成签到 ,获得积分10
30秒前
memory完成签到,获得积分10
30秒前
32秒前
33秒前
33秒前
34秒前
38秒前
LALA发布了新的文献求助10
44秒前
翎儿响叮当完成签到 ,获得积分10
45秒前
无极微光应助55155255采纳,获得20
45秒前
Jasper应助pinecone采纳,获得10
47秒前
50秒前
无限铸海发布了新的文献求助10
50秒前
顾矜应助科研通管家采纳,获得10
51秒前
思源应助科研通管家采纳,获得10
51秒前
星星亮应助科研通管家采纳,获得10
51秒前
彭于晏应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
乐乐应助科研通管家采纳,获得10
52秒前
浮游应助科研通管家采纳,获得10
52秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522443
求助须知:如何正确求助?哪些是违规求助? 4613434
关于积分的说明 14538832
捐赠科研通 4551149
什么是DOI,文献DOI怎么找? 2494023
邀请新用户注册赠送积分活动 1475048
关于科研通互助平台的介绍 1446425