UP-CrackNet: Unsupervised Pixel-Wise Road Crack Detection via Adversarial Image Restoration

人工智能 对抗制 像素 计算机视觉 计算机科学 图像(数学) 模式识别(心理学)
作者
Nachuan Ma,Rui Fan,Lihua Xie
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 13926-13936 被引量:5
标识
DOI:10.1109/tits.2024.3398037
摘要

Over the past decade, automated methods have been developed to detect cracks more efficiently, accurately, and objectively, with the ultimate goal of replacing conventional manual visual inspection techniques. Among these methods, semantic segmentation algorithms have demonstrated promising results in pixel-wise crack detection tasks. However, training such networks requires a large amount of human-annotated datasets with pixel-level annotations, which is a highly labor-intensive and time-consuming process. Moreover, supervised learning-based methods often struggle with poor generalizability in unseen datasets. Therefore, we propose an unsupervised pixel-wise road crack detection network, known as UP-CrackNet. Our approach first generates multi-scale square masks and randomly selects them to corrupt undamaged road images by removing certain regions. Subsequently, a generative adversarial network is trained to restore the corrupted regions by leveraging the semantic context learned from surrounding uncorrupted regions. During the testing phase, an error map is generated by calculating the difference between the input and restored images, which allows for pixel-wise crack detection. Our comprehensive experimental results demonstrate that UP-CrackNet outperforms other general-purpose unsupervised anomaly detection algorithms, and exhibits satisfactory performance and superior generalizability when compared with state-of-the-art supervised crack segmentation algorithms. Our source code is publicly available at mias.group/UP-CrackNet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Thien应助ww采纳,获得10
刚刚
刚刚
Harbour-Y完成签到 ,获得积分10
1秒前
11mao11完成签到 ,获得积分10
3秒前
华仔应助dreamfox采纳,获得10
4秒前
dzc发布了新的文献求助20
4秒前
6秒前
healer完成签到,获得积分10
11秒前
13秒前
忘词完成签到,获得积分10
14秒前
chen完成签到 ,获得积分10
14秒前
萝卜卷心菜完成签到 ,获得积分10
16秒前
18秒前
目m发布了新的文献求助10
18秒前
19秒前
王也发布了新的文献求助10
24秒前
Bailey完成签到,获得积分10
24秒前
25秒前
脑洞疼应助MoNeng采纳,获得10
27秒前
27秒前
蓝天应助加贝采纳,获得10
28秒前
29秒前
刘泽民完成签到,获得积分10
31秒前
CodeCraft应助佳期采纳,获得10
32秒前
浮游应助草中有粑粑采纳,获得10
32秒前
小二郎应助YEZQ采纳,获得10
33秒前
33秒前
34秒前
34秒前
椰子完成签到,获得积分10
36秒前
dzc完成签到,获得积分20
37秒前
Lyubb完成签到 ,获得积分10
38秒前
MoNeng发布了新的文献求助10
39秒前
40秒前
月半完成签到,获得积分10
40秒前
41秒前
VDC应助karstbing采纳,获得30
41秒前
浮游应助草中有粑粑采纳,获得10
41秒前
Orange应助冰激凌采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563635
求助须知:如何正确求助?哪些是违规求助? 4648551
关于积分的说明 14685268
捐赠科研通 4590482
什么是DOI,文献DOI怎么找? 2518601
邀请新用户注册赠送积分活动 1491196
关于科研通互助平台的介绍 1462478