Optical frequency domain reflectometry-based high-performance distributed sensing empowered by a data and physics-driven neural network

反射计 光学 人工神经网络 物理 频域 空间频率 遥感 计算机科学 时域 人工智能 计算机视觉 地质学
作者
Zhaopeng Zhang,Wei Peng,Osamah Alsalman,Lingmei Ma,Jie Huang,Chen Zhu
出处
期刊:Optics Express [The Optical Society]
卷期号:32 (14): 25074-25074 被引量:1
标识
DOI:10.1364/oe.514466
摘要

Optical frequency domain reflectometry (OFDR) based distributed strain sensors are the preferred choice for achieving accurate strain measurements over extensive sensing ranges while maintaining exceptional spatial resolution. However, the simultaneous realization of high spatial resolution, high strain resolution, large strain range, and an extended sensing range presents an exceedingly challenging endeavor. In this study, we introduce and experimentally demonstrate a data and physics-driven neural network-empowered OFDR system designed to attain high-performance distributed sensing. In our experiments, we successfully maintained an impressive sensing resolution of sub-microstrain (0.91 μ ε ) alongside a sharp spatial resolution of sub-millimeter (0.857 mm) across a 140-m sensing range. To the best of our knowledge, this marks the inaugural experimental demonstration of OFDR-based distributed sensing, combining sub-millimeter spatial resolution and sub- μ ε strain resolution across a lengthy sensing range over a hundred meters. This pioneering work unveils new pathways for the development of ultra-high-performance optical fiber sensing systems, paving the way for the next generation of intelligent systems tailored for diverse smart industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助啊娴仔采纳,获得10
1秒前
1秒前
珂伟完成签到,获得积分10
1秒前
鲜艳的帅哥完成签到,获得积分10
2秒前
wkjsdsg完成签到,获得积分10
2秒前
大七完成签到 ,获得积分10
2秒前
2秒前
jogrgr发布了新的文献求助10
3秒前
lll发布了新的文献求助10
4秒前
生气的鸡蛋完成签到,获得积分10
4秒前
qi发布了新的文献求助10
4秒前
zino发布了新的文献求助10
5秒前
5秒前
5秒前
stt发布了新的文献求助10
6秒前
小蘑菇应助杏花饼采纳,获得10
6秒前
海棠yiyi发布了新的文献求助50
6秒前
camellia完成签到 ,获得积分10
7秒前
7秒前
7秒前
田様应助柠木采纳,获得10
7秒前
7秒前
研友_VZG7GZ应助生气的鸡蛋采纳,获得10
8秒前
8秒前
8秒前
威武的万仇完成签到 ,获得积分10
9秒前
迷路的水彤完成签到 ,获得积分10
9秒前
千里发布了新的文献求助10
9秒前
jogrgr完成签到,获得积分10
9秒前
夯大力完成签到,获得积分10
9秒前
啊娴仔完成签到,获得积分10
10秒前
10秒前
10秒前
韭菜发布了新的文献求助10
10秒前
Harlotte发布了新的文献求助20
11秒前
思源应助系统提示采纳,获得10
11秒前
蜡笔发布了新的文献求助30
11秒前
宋嬴一发布了新的文献求助10
11秒前
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759