化学
镧系元素
金属有机骨架
分辨率(逻辑)
金属
无机化学
物理化学
有机化学
离子
吸附
人工智能
计算机科学
作者
Zhonghou Cai,Song Peng,Jinzhang Gao,Zhi-Ren Zhu,Fu‐Pei Liang,Kai Wang
出处
期刊:Polyhedron
[Elsevier]
日期:2024-09-01
卷期号:260: 117104-117104
标识
DOI:10.1016/j.poly.2024.117104
摘要
Chiral lanthanide metal organic frameworks (Ln-MOFs) have become a kind of promising platform for developing various chiral functional materials. However, their members are still scarce up to now, especially those obtained from spontaneous resolution. In this work, two pairs of enantiomers of chiral Ln-MOFs, namely, [Ln2(oda)3(H2O)4]·2H2O [Ln = Dy (Λ-1 and Δ-1), Gd (Λ-2 and Δ-2); oda = oxydiacetate], have been prepared from an achiral H2oda ligand by spontaneous resolution. They display homochiral Λ- or Δ-configurational 2D grid-like frameworks in the absence of any chiral source, where four carboxylate groups of oda2− ligands within each [LnIII(oda)3]3− module link to adjacent four Ln ions either in a left- or right-handed fashions. Their homochirality was further confirmed by solid-state circular dichroism (CD) spectrum. Magnetic measurements revealed that Λ-1 exhibits field-induced dual-relaxation behavior of single-molecule magnet (SMM). The effective energy barrier (Ueff) and relaxation time (τ0) of slow relaxation (SR) process are 92.63 K and 1.49 × 10−12 s, respectively. Furthermore, Λ-2 was found to show magnetocaloric effect (MCE), with the maximum magnetic entropy change (−ΔSm) of 10.02 J kg−1 K−1 at 7.0 T and 2.0 K.
科研通智能强力驱动
Strongly Powered by AbleSci AI