Hydrodynamic intensification and interfacial regulation strategy for the mixing process of non-Newtonian fluids

混合(物理) 非牛顿流体 过程(计算) 牛顿流体 机械 化学工程 材料科学 热力学 化学 物理 计算机科学 工程类 量子力学 操作系统
作者
Songsong Wang,Tao Meng,Shaodou Cen,Peiqiao Liu,Wei Yu,Shuang Qin,Yundong Wang,Zuohua Liu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:: 152691-152691
标识
DOI:10.1016/j.cej.2024.152691
摘要

Efficiently realizing laminar flow mixing of non-Newtonian fluids is a key challenge faced by conventional stirred reactors. In this study, an innovative strategy is proposed to regulate the flow pattern from radial to axial flow by changing the interface evolution of the flow field, so as to solve the problem of uneven mixing materials in laminar flow. An innovative combination of the RGB (Red, Green, Blue) brightness analysis and quantitative analysis area method was used to quantitatively describe the mixing performance of the three stirred reactor in the laminar flow. We found that the coloring area ratio of the dual shaft off-centred mixer (DSO) mixer was approximately 165.7 % and 93.8 % higher than that of the single shaft central (SSC) and single shaft off-centred mixer (SSO), respectively. Results showed that the DSO mixer can directionally adjust the stable interface of the flow field, and then obtain the ideal velocity distribution and flow pattern. Importantly, it is found that the mixer has an inherent axial mixing limit in the laminar flow. Increasing the Reynolds number can only shorten the time for the mixing system to reach the steady state, and cannot further improve the axial transport capacity of the system. Compared to the SSC and SSO systems, the DSO mixer demonstrated a reduction of nearly 20 % in overall mixing time and power consumption. Through comparative analysis of pressure distribution and Poincaré cross section, the DSO mixing system can switch chaos oscillation and realize the "globally chaotic mixing" from "locally chaotic mixing". Remarkably, this work highlights the potential of DSO mixer as a simple and efficient system for laminar flow mixing applications, such as polymerization processes, biological fermentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
2秒前
ATAYA发布了新的文献求助10
3秒前
星瑆心发布了新的文献求助10
3秒前
Lazarus_x完成签到,获得积分10
4秒前
whm发布了新的文献求助10
5秒前
豆dou发布了新的文献求助10
7秒前
旭日东升完成签到 ,获得积分10
8秒前
yyyyou完成签到,获得积分10
9秒前
科研通AI5应助xlj采纳,获得10
11秒前
Jenny应助WZ0904采纳,获得10
11秒前
弘一完成签到,获得积分10
11秒前
郑zhenglanyou完成签到 ,获得积分10
12秒前
14秒前
忧子忘完成签到,获得积分10
14秒前
15秒前
foreverchoi完成签到,获得积分10
15秒前
HH完成签到,获得积分20
15秒前
16秒前
whm完成签到,获得积分10
16秒前
18秒前
邬傥完成签到,获得积分10
19秒前
tomato应助执着采纳,获得20
20秒前
大方嵩发布了新的文献求助10
20秒前
梓ccc完成签到,获得积分10
20秒前
20秒前
求助发布了新的文献求助10
21秒前
风雨1210发布了新的文献求助10
21秒前
21秒前
22秒前
小梁要加油完成签到,获得积分20
22秒前
Alpha发布了新的文献求助10
23秒前
刘鹏宇发布了新的文献求助10
24秒前
zhangscience完成签到,获得积分10
24秒前
可爱的函函应助若狂采纳,获得10
25秒前
小蘑菇应助阿美采纳,获得30
25秒前
科研通AI2S应助机智小虾米采纳,获得10
26秒前
充电宝应助Xx.采纳,获得10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808