因果推理
疾病
期限(时间)
推论
阿尔茨海默病
空气污染
医学
环境卫生
污染
痴呆
重症监护医学
老年学
计算机科学
人工智能
病理
生态学
化学
物理
有机化学
量子力学
生物
作者
Michelle Qin,Naeem Khoshnevis,Francesca Dominici,Danielle Braun,Antonella Zanobetti,Daniel Mork
摘要
Alzheimer's disease and related dementias (ADRD) present a growing public health burden in the United States. One actionable risk factor for ADRD is air pollution: multiple studies have found associations between air pollution and exacerbation of ADRD. Our study builds on previous studies by applying modern statistical causal inference methodologies-generalized propensity score (GPS) weighting and matching-on a large, longitudinal dataset. We follow 50 million Medicare enrollees to investigate impacts of three air pollutants-fine particular matter (PM${}_{2.5}$), nitrogen dioxide (NO${}_2$), and summer ozone (O${}_3$)-on elderly patients' rate of first hospitalization with ADRD diagnosis. Similar to previous studies using traditional statistical models, our results found increased hospitalization risks due to increased PM${}_{2.5}$ and NO${}_2$ exposure, with less conclusive results for O${}_3$. In particular, our GPS weighting analysis finds IQR increases in PM${}_{2.5}$, NO${}_2$, or O${}_3$ exposure results in hazard ratios of 1.108 (95% CI: 1.097-1.119), 1.058 (1.049-1.067), or 1.045 (1.036-1.054), respectively. GPS matching results are similar for PM${}_{2.5}$ and NO${}_2$ with attenuated effects for O${}_3$. Our results strengthen arguments that long-term PM${}_{2.5}$ and NO${}_2$ exposure increases risk of hospitalization with ADRD diagnosis. Additionally, we highlight strengths and limitations of causal inference methodologies in observational studies with continuous treatments. Keywords: Alzheimer's disease and related dementias, air pollution, Medicare, causal inference, generalized propensity score.
科研通智能强力驱动
Strongly Powered by AbleSci AI