The WOA-CNN-LSTM-Attention Model for Predicting GNSS Water Vapor

全球导航卫星系统应用 计算机科学 遥感 大气模式 人工智能 气象学 地质学 全球定位系统 电信 地理
作者
Xiangrong Yan,Weifang Yang,Motong Gao,Nan Ding,Wenyuan Zhang,Longjiang Li,Yuhao Hou,Kefei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2024.3406694
摘要

Precipitable water vapor (PWV), as an important representative parameter of atmospheric water vapor contents, can be obtained by means of Global Navigation Satellite Systems (GNSS) using both ground-based and space-borne observation techniques. However, the PWV prediction models currently accessible tend to be simplistic combinations or individual models. In this study, we develop a WOA-CNN-LSTM-Attention model to predict PWV, which takes the sixteen GNSS PWV values near the HKKP station as characteristic parameters and the spatial relationship between the point of interest and its neighboring GNSS stations into consideration. An optimal model via the whale optimization algorithm (WOA) is investigated by using a wavelet analysis to separate noises, through combining convolutional neural network (CNN), long short-term memory neural network (LSTM) and attention mechanism. Results show that considerable improvement in the prediction accuracy has been achieved through a comparison between CNN-LSTM-Attention and the conventional LSTM and CNN-LSTM models. In terms of long-term predictability, CNN-LSTM-Attention is proven to be a superior model when 8 features are incorporated. The model's root mean square error (RMSE) is 2.30 mm which is reduced by 20.42 % than in the case of 0 feature is used. As a further analysis, we also examine the prediction performance of various models for hourly PWV using 7, 15, 30, 60 and 90 days of data as different lengths of training. The results show that CNN-LSTM-Attention has a better prediction effect when the training length is 30 days, the RMSE is 0.74 mm and the Nash-Sutcliffe efficiency coefficient (NSE) is 0.98.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
ldy完成签到 ,获得积分10
刚刚
qqqq完成签到,获得积分10
1秒前
3秒前
4秒前
朴素亦绿完成签到,获得积分10
4秒前
超级绫完成签到 ,获得积分10
5秒前
5秒前
HPP123发布了新的文献求助10
6秒前
Criminology34应助端庄亦巧采纳,获得20
6秒前
一灯大师发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
清澈发布了新的文献求助10
9秒前
10秒前
琦琦z完成签到,获得积分10
10秒前
科研通AI6.1应助郑浚杳采纳,获得10
12秒前
量子星尘发布了新的文献求助10
13秒前
三三三完成签到,获得积分20
13秒前
健康的梦旋完成签到,获得积分10
13秒前
16秒前
zwj28完成签到,获得积分10
17秒前
顺利毕业完成签到 ,获得积分10
17秒前
17秒前
Wang关注了科研通微信公众号
19秒前
22秒前
魁梧的凌瑶完成签到,获得积分10
23秒前
清澈完成签到,获得积分10
23秒前
HEROER发布了新的文献求助10
23秒前
英姑应助顺利的囧采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
26秒前
科研通AI6应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
wy.he应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
共享精神应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861