The WOA-CNN-LSTM-Attention Model for Predicting GNSS Water Vapor

全球导航卫星系统应用 计算机科学 遥感 大气模式 人工智能 气象学 地质学 全球定位系统 电信 地理
作者
Xiangrong Yan,Weifang Yang,Motong Gao,Nan Ding,Wenyuan Zhang,Longjiang Li,Yuhao Hou,Kefei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15
标识
DOI:10.1109/tgrs.2024.3406694
摘要

Precipitable water vapor (PWV), as an important representative parameter of atmospheric water vapor contents, can be obtained by means of Global Navigation Satellite Systems (GNSS) using both ground-based and space-borne observation techniques. However, the PWV prediction models currently accessible tend to be simplistic combinations or individual models. In this study, we develop a WOA-CNN-LSTM-Attention model to predict PWV, which takes the sixteen GNSS PWV values near the HKKP station as characteristic parameters and the spatial relationship between the point of interest and its neighboring GNSS stations into consideration. An optimal model via the whale optimization algorithm (WOA) is investigated by using a wavelet analysis to separate noises, through combining convolutional neural network (CNN), long short-term memory neural network (LSTM) and attention mechanism. Results show that considerable improvement in the prediction accuracy has been achieved through a comparison between CNN-LSTM-Attention and the conventional LSTM and CNN-LSTM models. In terms of long-term predictability, CNN-LSTM-Attention is proven to be a superior model when 8 features are incorporated. The model's root mean square error (RMSE) is 2.30 mm which is reduced by 20.42 % than in the case of 0 feature is used. As a further analysis, we also examine the prediction performance of various models for hourly PWV using 7, 15, 30, 60 and 90 days of data as different lengths of training. The results show that CNN-LSTM-Attention has a better prediction effect when the training length is 30 days, the RMSE is 0.74 mm and the Nash-Sutcliffe efficiency coefficient (NSE) is 0.98.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助找寻四氢叶酸采纳,获得10
刚刚
Owen应助凉拌折耳根采纳,获得10
1秒前
刘唐荣发布了新的文献求助10
1秒前
Jasper应助美丽的夜玉采纳,获得30
4秒前
一拳一个小欧阳完成签到 ,获得积分10
5秒前
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
咖啡豆应助科研通管家采纳,获得10
7秒前
咖啡豆应助科研通管家采纳,获得10
7秒前
爆米花应助Persistence采纳,获得10
7秒前
咖啡豆应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
又胖了完成签到,获得积分10
8秒前
脑洞疼应助谦让诗采纳,获得10
9秒前
机灵自中完成签到,获得积分10
10秒前
11秒前
12秒前
13秒前
爱听歌的寄云完成签到 ,获得积分10
13秒前
13秒前
Demo发布了新的文献求助10
14秒前
研友_VZG7GZ应助维生素采纳,获得10
15秒前
宋泽艺完成签到 ,获得积分10
15秒前
18秒前
王粒完成签到,获得积分10
24秒前
26秒前
陈宇是傻卵完成签到,获得积分10
26秒前
Demo完成签到,获得积分10
29秒前
打鬼忍者完成签到 ,获得积分10
30秒前
june完成签到,获得积分10
31秒前
32秒前
32秒前
浅梳雨完成签到,获得积分10
33秒前
stellafreeman完成签到,获得积分10
33秒前
楼亦玉完成签到,获得积分10
34秒前
萝卜炖土豆完成签到,获得积分10
35秒前
35秒前
朴实香露发布了新的文献求助10
38秒前
执玉笛完成签到,获得积分10
39秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791184
关于积分的说明 7798192
捐赠科研通 2447619
什么是DOI,文献DOI怎么找? 1301996
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194