The WOA-CNN-LSTM-Attention Model for Predicting GNSS Water Vapor

全球导航卫星系统应用 计算机科学 遥感 大气模式 人工智能 气象学 地质学 全球定位系统 电信 地理
作者
Xiangrong Yan,Weifang Yang,Motong Gao,Nan Ding,Wenyuan Zhang,Longjiang Li,Yuhao Hou,Kefei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2024.3406694
摘要

Precipitable water vapor (PWV), as an important representative parameter of atmospheric water vapor contents, can be obtained by means of Global Navigation Satellite Systems (GNSS) using both ground-based and space-borne observation techniques. However, the PWV prediction models currently accessible tend to be simplistic combinations or individual models. In this study, we develop a WOA-CNN-LSTM-Attention model to predict PWV, which takes the sixteen GNSS PWV values near the HKKP station as characteristic parameters and the spatial relationship between the point of interest and its neighboring GNSS stations into consideration. An optimal model via the whale optimization algorithm (WOA) is investigated by using a wavelet analysis to separate noises, through combining convolutional neural network (CNN), long short-term memory neural network (LSTM) and attention mechanism. Results show that considerable improvement in the prediction accuracy has been achieved through a comparison between CNN-LSTM-Attention and the conventional LSTM and CNN-LSTM models. In terms of long-term predictability, CNN-LSTM-Attention is proven to be a superior model when 8 features are incorporated. The model's root mean square error (RMSE) is 2.30 mm which is reduced by 20.42 % than in the case of 0 feature is used. As a further analysis, we also examine the prediction performance of various models for hourly PWV using 7, 15, 30, 60 and 90 days of data as different lengths of training. The results show that CNN-LSTM-Attention has a better prediction effect when the training length is 30 days, the RMSE is 0.74 mm and the Nash-Sutcliffe efficiency coefficient (NSE) is 0.98.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
zoey完成签到,获得积分10
4秒前
半烟完成签到 ,获得积分10
4秒前
4秒前
4秒前
海比天蓝发布了新的文献求助10
5秒前
武雨寒完成签到 ,获得积分20
5秒前
超帅的碱发布了新的文献求助30
6秒前
jingxian完成签到,获得积分10
7秒前
7秒前
爆米花应助涛1118采纳,获得10
7秒前
7秒前
zhantianao发布了新的文献求助10
7秒前
8秒前
8秒前
12秒前
bbbui完成签到 ,获得积分10
13秒前
清仔发布了新的文献求助10
13秒前
13秒前
哼哼唧唧发布了新的文献求助10
13秒前
落玉盘发布了新的文献求助10
14秒前
余姓懒发布了新的文献求助10
15秒前
16秒前
16秒前
英吉利25发布了新的文献求助10
16秒前
英姑应助海比天蓝采纳,获得10
16秒前
17秒前
斯文念波发布了新的文献求助10
20秒前
20秒前
酷波er应助wlei采纳,获得10
20秒前
慕青应助15884134873采纳,获得10
20秒前
23秒前
23秒前
清脆的白开水应助哇wwwww采纳,获得10
24秒前
25秒前
肆_完成签到 ,获得积分10
25秒前
26秒前
充电宝应助Della采纳,获得10
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176