The WOA-CNN-LSTM-Attention Model for Predicting GNSS Water Vapor

全球导航卫星系统应用 计算机科学 遥感 大气模式 人工智能 气象学 地质学 全球定位系统 电信 地理
作者
Xiangrong Yan,Weifang Yang,Motong Gao,Nan Ding,Wenyuan Zhang,Longjiang Li,Yuhao Hou,Kefei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:1
标识
DOI:10.1109/tgrs.2024.3406694
摘要

Precipitable water vapor (PWV), as an important representative parameter of atmospheric water vapor contents, can be obtained by means of Global Navigation Satellite Systems (GNSS) using both ground-based and space-borne observation techniques. However, the PWV prediction models currently accessible tend to be simplistic combinations or individual models. In this study, we develop a WOA-CNN-LSTM-Attention model to predict PWV, which takes the sixteen GNSS PWV values near the HKKP station as characteristic parameters and the spatial relationship between the point of interest and its neighboring GNSS stations into consideration. An optimal model via the whale optimization algorithm (WOA) is investigated by using a wavelet analysis to separate noises, through combining convolutional neural network (CNN), long short-term memory neural network (LSTM) and attention mechanism. Results show that considerable improvement in the prediction accuracy has been achieved through a comparison between CNN-LSTM-Attention and the conventional LSTM and CNN-LSTM models. In terms of long-term predictability, CNN-LSTM-Attention is proven to be a superior model when 8 features are incorporated. The model's root mean square error (RMSE) is 2.30 mm which is reduced by 20.42 % than in the case of 0 feature is used. As a further analysis, we also examine the prediction performance of various models for hourly PWV using 7, 15, 30, 60 and 90 days of data as different lengths of training. The results show that CNN-LSTM-Attention has a better prediction effect when the training length is 30 days, the RMSE is 0.74 mm and the Nash-Sutcliffe efficiency coefficient (NSE) is 0.98.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sgt完成签到,获得积分10
1秒前
李白白白完成签到,获得积分10
2秒前
yule完成签到,获得积分10
2秒前
深情安青应助Wearnn采纳,获得10
2秒前
3秒前
科研通AI5应助shareef采纳,获得10
4秒前
HJX发布了新的文献求助10
5秒前
未碎冰蓝完成签到,获得积分10
5秒前
sup3rX关注了科研通微信公众号
5秒前
ding应助密林小叶子采纳,获得10
8秒前
在水一方应助cheems采纳,获得10
9秒前
CodeCraft应助XUXU采纳,获得10
10秒前
hzx发布了新的文献求助20
10秒前
赘婿应助yy采纳,获得30
11秒前
老阎应助刘芋叶采纳,获得30
13秒前
13秒前
13秒前
孙明浩完成签到 ,获得积分10
14秒前
16秒前
16秒前
科研人河北关注了科研通微信公众号
16秒前
千俞发布了新的文献求助10
17秒前
七因完成签到,获得积分10
19秒前
拿捏叉踢歪完成签到 ,获得积分10
19秒前
yangyu0zi完成签到,获得积分20
19秒前
852应助鱼木采纳,获得30
19秒前
19秒前
koko发布了新的文献求助30
19秒前
20秒前
密林小叶子完成签到,获得积分10
20秒前
动听的凡白完成签到 ,获得积分10
21秒前
22秒前
幼儿发布了新的文献求助10
22秒前
ding应助球球采纳,获得10
22秒前
23秒前
充电宝应助Vanessa采纳,获得10
23秒前
科研通AI6应助陈勇杰采纳,获得10
23秒前
拿捏叉踢歪关注了科研通微信公众号
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061583
求助须知:如何正确求助?哪些是违规求助? 4285608
关于积分的说明 13355044
捐赠科研通 4103396
什么是DOI,文献DOI怎么找? 2246696
邀请新用户注册赠送积分活动 1252432
关于科研通互助平台的介绍 1183294