Radiomics and deep learning models for CT pre-operative lymph node staging in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis

医学 胰腺导管腺癌 无线电技术 诊断优势比 放射科 荟萃分析 胰腺癌 内科学 癌症
作者
Roberto Castellana,Salvatore Claudio Fanni,Claudia Roncella,Chiara Romei,Massimiliano Natrella,Emanuele Neri
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:176: 111510-111510 被引量:14
标识
DOI:10.1016/j.ejrad.2024.111510
摘要

Purpose To evaluate the diagnostic accuracy of computed tomography (CT)-based radiomic algorithms and deep learning models to preoperatively identify lymph node metastasis (LNM) in patients with pancreatic ductal adenocarcinoma (PDAC). Methods PubMed, CENTRAL, Scopus, Web of Science and IEEE databases were searched to identify relevant studies published up until February 11, 2024. Two reviewers screened all papers independently for eligibility. Studies reporting the accuracy of CT-based radiomics or deep learning models for detecting LNM in PDAC, using histopathology as the reference standard, were included. Quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2, the Radiomics Quality Score (RQS) and the the METhodological RadiomICs Score (METRICS). Overall sensitivity (SE), specificity (SP), diagnostic odds ratio (DOR), and the area under the curve (AUC) were calculated. Results Four radiomics studies comprising 213 patients and four deep learning studies with 272 patients were included. The average RQS total score was 12.00 ± 3.89, corresponding to an RQS percentage of 33.33 ± 10.80, while the average METRICS score was 63.60 ± 10.88. A significant and strong positive correlation was found between RQS and METRICS (p = 0.016; r = 0.810). The pooled SE, SP, DOR, and AUC of all the studies were 0.83 (95 %CI = 0.77–0.88), 0.76 (95 %CI = 0.62–0.86), 15.70 (95 %CI = 8.12–27.50) and 0.85 (95 %CI = 0.77–0.88). Meta-regression analysis results indicated that neither the study type (radiomics vs deep learning) nor the dataset size of the studies had a significant effect on the DOR (p = 0.09 and p = 0.26, respectively). Conclusion Based on our meta-analysis findings, preoperative CT-based radiomics algorithms and deep learning models demonstrate favorable performance in predicting LNM in patients with PDAC, with a strong correlation between RQS and METRICS of the included studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜甜醉香发布了新的文献求助10
刚刚
sssyys完成签到,获得积分20
刚刚
Aimeee完成签到,获得积分10
1秒前
1秒前
嘿嘿发布了新的文献求助10
1秒前
嘞是举仔发布了新的文献求助10
1秒前
章鱼发布了新的文献求助10
1秒前
2秒前
王志鹏发布了新的文献求助10
2秒前
bkagyin应助十一采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
漠雨寒灯发布了新的文献求助30
3秒前
3秒前
LLYW完成签到,获得积分10
3秒前
小野菌发布了新的文献求助10
4秒前
在水一方应助tanhaili采纳,获得10
4秒前
smottom应助lvlv采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
treasure发布了新的文献求助10
5秒前
笑点低的牛二完成签到,获得积分10
5秒前
朴素板栗发布了新的文献求助10
6秒前
XHX发布了新的文献求助10
6秒前
原本完成签到,获得积分10
6秒前
6秒前
6秒前
California完成签到 ,获得积分10
7秒前
7秒前
善学以致用应助跳跃冬亦采纳,获得10
7秒前
7秒前
Hello应助李李李采纳,获得10
7秒前
8秒前
zzw18512467916完成签到,获得积分10
8秒前
千城完成签到,获得积分10
8秒前
Clark发布了新的文献求助10
8秒前
9秒前
如意友绿完成签到,获得积分10
9秒前
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5692559
求助须知:如何正确求助?哪些是违规求助? 5089055
关于积分的说明 15208836
捐赠科研通 4849783
什么是DOI,文献DOI怎么找? 2601280
邀请新用户注册赠送积分活动 1553052
关于科研通互助平台的介绍 1511274