Radiomics and deep learning models for CT pre-operative lymph node staging in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis

医学 胰腺导管腺癌 无线电技术 诊断优势比 放射科 荟萃分析 胰腺癌 内科学 癌症
作者
Roberto Castellana,Salvatore Claudio Fanni,Claudia Roncella,Chiara Romei,Massimiliano Natrella,Emanuele Neri
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:176: 111510-111510 被引量:14
标识
DOI:10.1016/j.ejrad.2024.111510
摘要

Purpose To evaluate the diagnostic accuracy of computed tomography (CT)-based radiomic algorithms and deep learning models to preoperatively identify lymph node metastasis (LNM) in patients with pancreatic ductal adenocarcinoma (PDAC). Methods PubMed, CENTRAL, Scopus, Web of Science and IEEE databases were searched to identify relevant studies published up until February 11, 2024. Two reviewers screened all papers independently for eligibility. Studies reporting the accuracy of CT-based radiomics or deep learning models for detecting LNM in PDAC, using histopathology as the reference standard, were included. Quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2, the Radiomics Quality Score (RQS) and the the METhodological RadiomICs Score (METRICS). Overall sensitivity (SE), specificity (SP), diagnostic odds ratio (DOR), and the area under the curve (AUC) were calculated. Results Four radiomics studies comprising 213 patients and four deep learning studies with 272 patients were included. The average RQS total score was 12.00 ± 3.89, corresponding to an RQS percentage of 33.33 ± 10.80, while the average METRICS score was 63.60 ± 10.88. A significant and strong positive correlation was found between RQS and METRICS (p = 0.016; r = 0.810). The pooled SE, SP, DOR, and AUC of all the studies were 0.83 (95 %CI = 0.77–0.88), 0.76 (95 %CI = 0.62–0.86), 15.70 (95 %CI = 8.12–27.50) and 0.85 (95 %CI = 0.77–0.88). Meta-regression analysis results indicated that neither the study type (radiomics vs deep learning) nor the dataset size of the studies had a significant effect on the DOR (p = 0.09 and p = 0.26, respectively). Conclusion Based on our meta-analysis findings, preoperative CT-based radiomics algorithms and deep learning models demonstrate favorable performance in predicting LNM in patients with PDAC, with a strong correlation between RQS and METRICS of the included studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gcy发布了新的文献求助10
刚刚
向阳完成签到,获得积分10
刚刚
刚刚
个性的紫菜应助FFFFFF采纳,获得100
刚刚
LM完成签到 ,获得积分10
1秒前
1秒前
2秒前
3秒前
shdheud发布了新的文献求助10
3秒前
pu完成签到 ,获得积分10
4秒前
4秒前
niu发布了新的文献求助10
4秒前
xx发布了新的文献求助10
4秒前
朱猪侠完成签到,获得积分10
5秒前
天天快乐应助ruby采纳,获得10
8秒前
复杂发布了新的文献求助10
8秒前
刚国忠完成签到,获得积分20
8秒前
cc发布了新的文献求助10
9秒前
yy完成签到,获得积分10
9秒前
彭于晏应助Hey采纳,获得10
9秒前
10秒前
CodeCraft应助张张采纳,获得10
10秒前
无名举报sl960822求助涉嫌违规
10秒前
chiu_yy发布了新的文献求助10
12秒前
13秒前
希望天下0贩的0应助真真采纳,获得10
14秒前
152完成签到 ,获得积分10
14秒前
14秒前
chychychy完成签到 ,获得积分10
14秒前
14秒前
15秒前
苹果牌牛仔裤完成签到,获得积分10
15秒前
pengjiejie完成签到,获得积分10
16秒前
田様应助江屿采纳,获得10
17秒前
echo完成签到,获得积分10
17秒前
摸鱼帝王发布了新的文献求助10
17秒前
17秒前
科研通AI6应助ooo采纳,获得10
17秒前
芃芃完成签到 ,获得积分10
17秒前
冫氵完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632327
求助须知:如何正确求助?哪些是违规求助? 4726681
关于积分的说明 14981762
捐赠科研通 4790262
什么是DOI,文献DOI怎么找? 2558238
邀请新用户注册赠送积分活动 1518646
关于科研通互助平台的介绍 1479089