亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics and deep learning models for CT pre-operative lymph node staging in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis

医学 胰腺导管腺癌 无线电技术 诊断优势比 放射科 荟萃分析 胰腺癌 内科学 癌症
作者
Roberto Castellana,Salvatore Claudio Fanni,Claudia Roncella,Chiara Romei,Massimiliano Natrella,Emanuele Neri
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:176: 111510-111510 被引量:14
标识
DOI:10.1016/j.ejrad.2024.111510
摘要

Purpose To evaluate the diagnostic accuracy of computed tomography (CT)-based radiomic algorithms and deep learning models to preoperatively identify lymph node metastasis (LNM) in patients with pancreatic ductal adenocarcinoma (PDAC). Methods PubMed, CENTRAL, Scopus, Web of Science and IEEE databases were searched to identify relevant studies published up until February 11, 2024. Two reviewers screened all papers independently for eligibility. Studies reporting the accuracy of CT-based radiomics or deep learning models for detecting LNM in PDAC, using histopathology as the reference standard, were included. Quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2, the Radiomics Quality Score (RQS) and the the METhodological RadiomICs Score (METRICS). Overall sensitivity (SE), specificity (SP), diagnostic odds ratio (DOR), and the area under the curve (AUC) were calculated. Results Four radiomics studies comprising 213 patients and four deep learning studies with 272 patients were included. The average RQS total score was 12.00 ± 3.89, corresponding to an RQS percentage of 33.33 ± 10.80, while the average METRICS score was 63.60 ± 10.88. A significant and strong positive correlation was found between RQS and METRICS (p = 0.016; r = 0.810). The pooled SE, SP, DOR, and AUC of all the studies were 0.83 (95 %CI = 0.77–0.88), 0.76 (95 %CI = 0.62–0.86), 15.70 (95 %CI = 8.12–27.50) and 0.85 (95 %CI = 0.77–0.88). Meta-regression analysis results indicated that neither the study type (radiomics vs deep learning) nor the dataset size of the studies had a significant effect on the DOR (p = 0.09 and p = 0.26, respectively). Conclusion Based on our meta-analysis findings, preoperative CT-based radiomics algorithms and deep learning models demonstrate favorable performance in predicting LNM in patients with PDAC, with a strong correlation between RQS and METRICS of the included studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
矢思然完成签到,获得积分10
2秒前
3秒前
寒冷念文发布了新的文献求助10
4秒前
5秒前
默默完成签到 ,获得积分10
13秒前
bkagyin应助寒冷念文采纳,获得10
13秒前
17秒前
狂野的含烟完成签到 ,获得积分10
19秒前
22秒前
22秒前
26秒前
27秒前
28秒前
ffff完成签到 ,获得积分10
28秒前
畅快甜瓜发布了新的文献求助30
33秒前
华仔应助Omni采纳,获得10
33秒前
yb完成签到,获得积分10
35秒前
40秒前
40秒前
46秒前
ljy完成签到 ,获得积分10
58秒前
59秒前
1分钟前
星辰大海应助畅快甜瓜采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
weibo完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
大个应助louis采纳,获得10
1分钟前
畅快甜瓜发布了新的文献求助10
1分钟前
Robot完成签到 ,获得积分10
1分钟前
2分钟前
CipherSage应助畅快甜瓜采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732177
求助须知:如何正确求助?哪些是违规求助? 5337212
关于积分的说明 15322034
捐赠科研通 4877874
什么是DOI,文献DOI怎么找? 2620700
邀请新用户注册赠送积分活动 1569938
关于科研通互助平台的介绍 1526542