Radiomics and deep learning models for CT pre-operative lymph node staging in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis

医学 胰腺导管腺癌 无线电技术 诊断优势比 放射科 荟萃分析 胰腺癌 内科学 癌症
作者
Roberto Castellana,Salvatore Claudio Fanni,Claudia Roncella,Chiara Romei,Massimiliano Natrella,Emanuele Neri
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:176: 111510-111510 被引量:6
标识
DOI:10.1016/j.ejrad.2024.111510
摘要

Purpose To evaluate the diagnostic accuracy of computed tomography (CT)-based radiomic algorithms and deep learning models to preoperatively identify lymph node metastasis (LNM) in patients with pancreatic ductal adenocarcinoma (PDAC). Methods PubMed, CENTRAL, Scopus, Web of Science and IEEE databases were searched to identify relevant studies published up until February 11, 2024. Two reviewers screened all papers independently for eligibility. Studies reporting the accuracy of CT-based radiomics or deep learning models for detecting LNM in PDAC, using histopathology as the reference standard, were included. Quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2, the Radiomics Quality Score (RQS) and the the METhodological RadiomICs Score (METRICS). Overall sensitivity (SE), specificity (SP), diagnostic odds ratio (DOR), and the area under the curve (AUC) were calculated. Results Four radiomics studies comprising 213 patients and four deep learning studies with 272 patients were included. The average RQS total score was 12.00 ± 3.89, corresponding to an RQS percentage of 33.33 ± 10.80, while the average METRICS score was 63.60 ± 10.88. A significant and strong positive correlation was found between RQS and METRICS (p = 0.016; r = 0.810). The pooled SE, SP, DOR, and AUC of all the studies were 0.83 (95 %CI = 0.77–0.88), 0.76 (95 %CI = 0.62–0.86), 15.70 (95 %CI = 8.12–27.50) and 0.85 (95 %CI = 0.77–0.88). Meta-regression analysis results indicated that neither the study type (radiomics vs deep learning) nor the dataset size of the studies had a significant effect on the DOR (p = 0.09 and p = 0.26, respectively). Conclusion Based on our meta-analysis findings, preoperative CT-based radiomics algorithms and deep learning models demonstrate favorable performance in predicting LNM in patients with PDAC, with a strong correlation between RQS and METRICS of the included studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡然的静珊完成签到,获得积分10
刚刚
香蕉觅云应助Breathe采纳,获得10
1秒前
1秒前
1秒前
徐昊雯发布了新的文献求助10
1秒前
科研通AI5应助汤柏钧采纳,获得10
1秒前
玖玖救捌壹完成签到 ,获得积分20
1秒前
1秒前
2秒前
ping发布了新的文献求助10
2秒前
yang发布了新的文献求助10
2秒前
3秒前
虚心的夏青完成签到,获得积分10
3秒前
爱狗先森完成签到,获得积分10
3秒前
3秒前
李健的小迷弟应助Cora采纳,获得10
3秒前
大个应助haha采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
fox199753206完成签到,获得积分10
4秒前
4秒前
小王很哇塞完成签到 ,获得积分20
4秒前
Owen应助lzz采纳,获得10
4秒前
小二郎应助chifan采纳,获得10
5秒前
子车茗应助xiaosongmufaeins采纳,获得20
6秒前
所所应助Satan采纳,获得10
6秒前
科研通AI5应助生动的翠容采纳,获得10
6秒前
神猪完成签到,获得积分10
6秒前
zuhayr发布了新的文献求助10
6秒前
123131发布了新的文献求助10
7秒前
7秒前
7秒前
糕冷草莓发布了新的文献求助10
7秒前
WJW发布了新的文献求助10
7秒前
mzhmhy完成签到,获得积分10
7秒前
852应助沉默的莞采纳,获得20
8秒前
JamesPei应助闪闪如南采纳,获得10
8秒前
Jasper应助DD采纳,获得10
9秒前
9秒前
SciGPT应助123131采纳,获得10
10秒前
饱满帽子发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603625
求助须知:如何正确求助?哪些是违规求助? 4012242
关于积分的说明 12422760
捐赠科研通 3692758
什么是DOI,文献DOI怎么找? 2035865
邀请新用户注册赠送积分活动 1068967
科研通“疑难数据库(出版商)”最低求助积分说明 953437