Radiomics and deep learning models for CT pre-operative lymph node staging in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis

医学 胰腺导管腺癌 无线电技术 诊断优势比 放射科 荟萃分析 胰腺癌 内科学 癌症
作者
Roberto Castellana,Salvatore Claudio Fanni,Claudia Roncella,Chiara Romei,Massimiliano Natrella,Emanuele Neri
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:176: 111510-111510 被引量:14
标识
DOI:10.1016/j.ejrad.2024.111510
摘要

Purpose To evaluate the diagnostic accuracy of computed tomography (CT)-based radiomic algorithms and deep learning models to preoperatively identify lymph node metastasis (LNM) in patients with pancreatic ductal adenocarcinoma (PDAC). Methods PubMed, CENTRAL, Scopus, Web of Science and IEEE databases were searched to identify relevant studies published up until February 11, 2024. Two reviewers screened all papers independently for eligibility. Studies reporting the accuracy of CT-based radiomics or deep learning models for detecting LNM in PDAC, using histopathology as the reference standard, were included. Quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2, the Radiomics Quality Score (RQS) and the the METhodological RadiomICs Score (METRICS). Overall sensitivity (SE), specificity (SP), diagnostic odds ratio (DOR), and the area under the curve (AUC) were calculated. Results Four radiomics studies comprising 213 patients and four deep learning studies with 272 patients were included. The average RQS total score was 12.00 ± 3.89, corresponding to an RQS percentage of 33.33 ± 10.80, while the average METRICS score was 63.60 ± 10.88. A significant and strong positive correlation was found between RQS and METRICS (p = 0.016; r = 0.810). The pooled SE, SP, DOR, and AUC of all the studies were 0.83 (95 %CI = 0.77–0.88), 0.76 (95 %CI = 0.62–0.86), 15.70 (95 %CI = 8.12–27.50) and 0.85 (95 %CI = 0.77–0.88). Meta-regression analysis results indicated that neither the study type (radiomics vs deep learning) nor the dataset size of the studies had a significant effect on the DOR (p = 0.09 and p = 0.26, respectively). Conclusion Based on our meta-analysis findings, preoperative CT-based radiomics algorithms and deep learning models demonstrate favorable performance in predicting LNM in patients with PDAC, with a strong correlation between RQS and METRICS of the included studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助科研通管家采纳,获得10
刚刚
bjbmtxy应助科研通管家采纳,获得10
刚刚
Zhou应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
太阳雨发布了新的文献求助10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
ANSWER完成签到,获得积分10
1秒前
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
ding应助科研通管家采纳,获得10
1秒前
Amber发布了新的文献求助10
1秒前
Akim应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
bjbmtxy应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
AUPTCHEM应助科研通管家采纳,获得10
2秒前
天人合一应助科研通管家采纳,获得10
2秒前
2秒前
jinghong发布了新的文献求助10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助等待靖儿采纳,获得10
2秒前
Ava应助鲸鱼打滚采纳,获得10
2秒前
嘿嘿发布了新的文献求助10
2秒前
4秒前
hahameily完成签到 ,获得积分10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531567
求助须知:如何正确求助?哪些是违规求助? 4620363
关于积分的说明 14572950
捐赠科研通 4560019
什么是DOI,文献DOI怎么找? 2498695
邀请新用户注册赠送积分活动 1478617
关于科研通互助平台的介绍 1449993