Shortcut to chemically accurate quantum computing via density-based basis-set correction

基准集 计算机科学 量子位元 全配置交互 量子计算机 量子 电子结构 密度泛函理论 基础(线性代数) 量子算法 统计物理学 算法 量子力学 数学 物理 组态交互作用 分子 几何学
作者
Diata Traoré,Olivier Adjoua,César Feniou,Ioanna-Maria Lygatsika,Yvon Maday,Evgeny Posenitskiy,Kerstin Hammernik,Alberto Peruzzo,Julien Toulouse,Emmanuel Giner,Jean‐Philip Piquemal
出处
期刊:Communications chemistry [Springer Nature]
卷期号:7 (1)
标识
DOI:10.1038/s42004-024-01348-3
摘要

Quantum computing promises a computational advantage over classical methods in electronic-structure calculations, with expected applications in drug design and materials science. Accessing a quantitative description of chemical systems while minimizing quantum resources, such as the number of qubits, is an essential challenge given the limited capabilities of current quantum processors. We provide a shortcut towards quantum computations at chemical accuracy by approaching the complete-basis-set limit (CBS) through integrating density-functional theory into quantum algorithms via density-based basis-set corrections coupled to basis-sets crafted on-the-fly and specifically adapted to a given system/user-defined qubit budget. The approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties such as dipole moments. It can also serve as a classical, a posteriori, energy correction to quantum hardware calculations. The strategy is assessed using GPU-accelerated state-vector emulation up to 32 qubits. We converge the ground-state energies of four systems (He, Be, H$_2$, LiH) within chemical accuracy of the CBS full-configuration-interaction reference, while offering a systematic increase of accuracy beyond a double-zeta quality for various molecules up to the H$_8$ hydrogen chain. We also obtain dissociation curves for H$_2$ and LiH that reach the CBS limit whereas for the challenging simulation of the N$_2$ triple-bond breaking, we achieve a near-triple-zeta quality at the cost of a minimal basis-set. This hybrid strategy allows us to obtain quantitative results that would otherwise require brute-force quantum simulations using far more than 100 logical qubits, thereby opening up opportunities to explore real-world chemistry with reasonable computational resources.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2023AKY完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
彭于晏应助惠惠采纳,获得10
2秒前
风魂剑主完成签到,获得积分10
3秒前
yryzst9899发布了新的文献求助10
3秒前
4秒前
飘逸小笼包完成签到,获得积分10
4秒前
科研小郑完成签到,获得积分10
4秒前
CipherSage应助熊boy采纳,获得10
4秒前
XXGG完成签到 ,获得积分10
5秒前
大个应助舒心赛凤采纳,获得10
5秒前
晨曦发布了新的文献求助10
6秒前
6秒前
ff0110完成签到,获得积分10
7秒前
星辰大海应助苹果萧采纳,获得10
7秒前
徐徐完成签到,获得积分10
7秒前
哈哈哈哈发布了新的文献求助10
8秒前
请叫我风吹麦浪应助yoon采纳,获得10
8秒前
认真的青柠完成签到,获得积分10
8秒前
bbanshan完成签到,获得积分10
8秒前
卫生纸发布了新的文献求助10
8秒前
8秒前
9秒前
奔奔完成签到,获得积分10
9秒前
脑洞疼应助李来仪采纳,获得10
10秒前
10秒前
10秒前
demonox发布了新的文献求助10
10秒前
jbhb发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
范月月完成签到 ,获得积分10
13秒前
默默的皮牙子应助Rrr采纳,获得10
13秒前
默默的皮牙子应助Rrr采纳,获得10
13秒前
机智苗完成签到,获得积分10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794