Electrospun NiCo2S4 nanofibers decorated by rGO wrapping with high OH- adsorption ability for alkaline supercapacitors

纳米纤维 超级电容器 吸附 化学工程 材料科学 静电纺丝 纳米技术 复合材料 化学 电化学 聚合物 有机化学 电极 工程类 物理化学
作者
Feng Xie,Kun Yang,Haoxian Zhu,Wei Li,Lei Zhang,Li Sun,Yihe Zhang
出处
期刊:Journal of Alloys and Compounds [Elsevier BV]
卷期号:1001: 175005-175005 被引量:3
标识
DOI:10.1016/j.jallcom.2024.175005
摘要

The bimetallic sulfide of NiCo2S4 generally show better electrochemical performance than its bimetallic oxide counterpart in supercapacitor electrode applications. In this work, we theoretically explain their essential differences in reaction mechanisms through density functional theory, including their OH- adsorption energy, energy band structure, total and projected density of states, as well as d-band center of Ni and Co, which confirms the intrinsic advantage of NiCo2S4 over NiCo2O4 as electrode material for alkaline supercapacitors. Then, through electrospinning, we fabricate porous nanofibers of NiCo2S4-NF and NiCo2O4-NF with similar porous, fibrous morphology stacked by nanoparticles, of which NiCo2S4-NF gives obviously superior performance in alkaline electrolyte as supercapacitor electrodes, verifying the theoretical prediction. Moreover, an rGO coverage layer was in-situ incorporated to fabricate porous nanofibers of rGO@NiCo2S4-NF, which includes an additional surface rGO wrapping layer. The 1D and porous architecture renders rGO@NiCo2S4-NF more exposed OH- adsorption sites to induce active redox reactions, while the rGO coverage further stabilized the nanofibers and ensures inter-fiber charge transfer. Due to the combination of morphology optimization and carbon combination, rGO@NiCo2S4-NF delivers enhanced capacity, cycle stability and rate ability than NiCo2S4-NF and NiCo2O4-NF. Using rGO@NiCo2S4-NF, asymmetric supercapacitors are assembled, which also exhibits promising energy densities and power densities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
einspringen发布了新的文献求助10
刚刚
hh完成签到,获得积分10
1秒前
2秒前
3秒前
LL发布了新的文献求助10
3秒前
科研通AI6应助沉静的浩然采纳,获得30
3秒前
3秒前
冷萃咖啡完成签到,获得积分10
4秒前
小林完成签到 ,获得积分10
4秒前
鱼的宇宙完成签到,获得积分20
4秒前
5秒前
6秒前
击剑男孩发布了新的文献求助10
6秒前
科研通AI6应助Qianfan采纳,获得10
8秒前
终梦发布了新的文献求助10
9秒前
薄荷味完成签到 ,获得积分10
9秒前
orixero应助李小新采纳,获得10
9秒前
ChenYifei发布了新的文献求助10
10秒前
10秒前
金子悠月完成签到,获得积分10
10秒前
qkm123发布了新的文献求助10
11秒前
浮游应助文艺抽屉123采纳,获得10
12秒前
击剑男孩完成签到,获得积分10
13秒前
淘淘完成签到,获得积分10
13秒前
ysy完成签到,获得积分10
13秒前
neo完成签到,获得积分10
13秒前
angela完成签到,获得积分10
14秒前
14秒前
852应助梅菜菜采纳,获得10
14秒前
欢呼的雨琴完成签到 ,获得积分10
14秒前
作风作雨完成签到,获得积分10
16秒前
KYRIE发布了新的文献求助10
16秒前
Mark0001完成签到,获得积分20
18秒前
朴实雨竹完成签到,获得积分10
18秒前
18秒前
科研通AI5应助浮生如梦采纳,获得100
19秒前
大妈发布了新的文献求助10
20秒前
执着绿草完成签到 ,获得积分10
20秒前
丘比特应助哈哈哈采纳,获得10
20秒前
KYRIE完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911338
求助须知:如何正确求助?哪些是违规求助? 4186859
关于积分的说明 13001611
捐赠科研通 3954670
什么是DOI,文献DOI怎么找? 2168382
邀请新用户注册赠送积分活动 1186856
关于科研通互助平台的介绍 1094206