Artificial intelligence in retinal screening using OCT images: A review of the last decade (2013–2023)

视网膜 计算机科学 人工智能 验光服务 眼科 计算机视觉 医学
作者
Muhammed Halil Akpınar,Abdulkadir Şengür,Oliver Faust,Louis Tong,Filippo Molinari,U. Rajendra Acharya
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:254: 108253-108253 被引量:7
标识
DOI:10.1016/j.cmpb.2024.108253
摘要

Optical coherence tomography (OCT) has ushered in a transformative era in the domain of ophthalmology, offering non-invasive imaging with high resolution for ocular disease detection. OCT, which is frequently used in diagnosing fundamental ocular pathologies, such as glaucoma and age-related macular degeneration (AMD), plays an important role in the widespread adoption of this technology. Apart from glaucoma and AMD, we will also investigate pertinent pathologies, such as epiretinal membrane (ERM), macular hole (MH), macular dystrophy (MD), vitreomacular traction (VMT), diabetic maculopathy (DMP), cystoid macular edema (CME), central serous chorioretinopathy (CSC), diabetic macular edema (DME), diabetic retinopathy (DR), drusen, glaucomatous optic neuropathy (GON), neovascular AMD (nAMD), myopia macular degeneration (MMD) and choroidal neovascularization (CNV) diseases. This comprehensive review examines the role that OCT-derived images play in detecting, characterizing, and monitoring eye diseases. The 2020 PRISMA guideline was used to structure a systematic review of research on various eye conditions using machine learning (ML) or deep learning (DL) techniques. A thorough search across IEEE, PubMed, Web of Science, and Scopus databases yielded 1787 publications, of which 1136 remained after removing duplicates. Subsequent exclusion of conference papers, review papers, and non-open-access articles reduced the selection to 511 articles. Further scrutiny led to the exclusion of 435 more articles due to lower-quality indexing or irrelevance, resulting in 76 journal articles for the review. During our investigation, we found that a major challenge for ML-based decision support is the abundance of features and the determination of their significance. In contrast, DL-based decision support is characterized by a plug-and-play nature rather than relying on a trial-and-error approach. Furthermore, we observed that pre-trained networks are practical and especially useful when working on complex images such as OCT. Consequently, pre-trained deep networks were frequently utilized for classification tasks. Currently, medical decision support aims to reduce the workload of ophthalmologists and retina specialists during routine tasks. In the future, it might be possible to create continuous learning systems that can predict ocular pathologies by identifying subtle changes in OCT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缥缈一曲完成签到,获得积分10
1秒前
小丑岩完成签到,获得积分10
2秒前
ppc524发布了新的文献求助10
2秒前
lzs发布了新的文献求助10
4秒前
科研通AI2S应助过时的热狗采纳,获得10
4秒前
小巫发布了新的文献求助10
4秒前
陶醉平松发布了新的文献求助10
4秒前
8秒前
科目三应助科研通管家采纳,获得10
8秒前
可爱的函函应助小巫采纳,获得10
11秒前
天天天才完成签到,获得积分10
11秒前
俭朴新之完成签到 ,获得积分10
12秒前
洋洋爱吃枣完成签到 ,获得积分10
13秒前
小蘑菇应助半斤采纳,获得10
14秒前
14秒前
zai完成签到 ,获得积分10
16秒前
龚仕杰完成签到 ,获得积分10
16秒前
zz完成签到 ,获得积分10
18秒前
小巫完成签到,获得积分10
18秒前
王春起发布了新的文献求助10
18秒前
hky完成签到,获得积分10
20秒前
20秒前
WW发布了新的文献求助10
21秒前
在水一方应助安静的水风采纳,获得30
22秒前
lzs完成签到,获得积分10
23秒前
张文文发布了新的文献求助10
25秒前
25秒前
MRshenyy完成签到,获得积分10
25秒前
27秒前
文龙完成签到 ,获得积分10
28秒前
情怀应助有魅力的香芦采纳,获得10
30秒前
YIWENNN发布了新的文献求助10
32秒前
科研修沟完成签到 ,获得积分10
33秒前
淡然宛凝完成签到 ,获得积分10
33秒前
34秒前
WW完成签到,获得积分20
34秒前
36秒前
龙胆紫应助CrazyOnce采纳,获得10
37秒前
MYW完成签到,获得积分10
37秒前
学习使勇哥进步完成签到 ,获得积分10
38秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
Mercury and Silver Mining in the Colonial Atlantic 300
Studi sul Vicino Oriente antico dedicati alla memoria di Luigi Cagni vol.1 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3375135
求助须知:如何正确求助?哪些是违规求助? 2991724
关于积分的说明 8747116
捐赠科研通 2675737
什么是DOI,文献DOI怎么找? 1465817
科研通“疑难数据库(出版商)”最低求助积分说明 677940
邀请新用户注册赠送积分活动 669633