材料科学
阴极
氧化物
兴奋剂
镍
电化学
微观结构
化学工程
氧气
电极
复合材料
光电子学
冶金
物理化学
化学
有机化学
工程类
作者
Zhi‐Chao Liu,Wang Fang,Weina Wang,Sheng Liu,Xueping Gao
标识
DOI:10.1002/smtd.202400224
摘要
Abstract The pursuit of high energy densities propels the design of next‐generation nickel‐based layered oxide cathodes. The utilization of low‐cobalt, ultrahigh‐nickel layered oxide cathodes, and the extension of operating voltages promise enhanced energy density. However, stability and safety face challenges associated with nickel content, including structural degradation, lattice oxygen evolution, and thermal instability. In this study, a promising strategy of Al and Nb dual‐bulk‐doping is presented in high‐Ni cathode materials of LiNi 0.96 Co 0.04 O 2 (NC) to stabilize the bulk structure, suppress oxygen release, and attain superior electrochemical performance at high voltages. The introduction of Al and Nb effectively raises the migration energy of Ni 2+ into Li sites and stabilizes lattice oxygen through strengthened Al─O and Nb─O bonds. Furthermore, the substitution of high‐valence Nb ions reduces the charge depletion of lattice oxygen and induces an ordered microstructure. The Al and Nb dual‐bulk‐doping strategy mitigates strain and stress associated with the H2↔H3 phase transition, reducing the generation and propagation of microcracks. The resulting Li(Ni 0.96 Co 0.04 ) 0.985 Al 0.01 Nb 0.005 O 2 (NCAN) cathode exhibits superior cycling stability, with a capacity retention of 77.8% after 300 cycles, even when operating at a high‐voltage of 4.4 V, outperforming the NC (48.5%). This work provides a promising perspective for developing high‐voltage and high‐Ni cathode materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI