亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics Guided Deep Learning-based Model for Short-term Origin-Destination Demand Prediction in Urban Rail Transit Systems Under Pandemic

大流行 期限(时间) 过境(卫星) 城市轨道交通 轨道交通 2019年冠状病毒病(COVID-19) 运输工程 计算机科学 工程类 公共交通 物理 医学 疾病 病理 量子力学 传染病(医学专业)
作者
Jinlei Zhang,Jinlei Zhang,Lixing Yang,Feng Chen,Shukai Li,Zi-You Gao
出处
期刊:Engineering [Elsevier]
标识
DOI:10.1016/j.eng.2024.04.020
摘要

Accurate origin–destination (OD) demand prediction is crucial for the efficient operation and management of urban rail transit (URT) systems, particularly during a pandemic. However, this task faces several limitations, including real-time availability, sparsity, and high-dimensionality issues, and the impact of the pandemic. Consequently, this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network (PAG-STAN) for metro OD demand prediction under pandemic conditions. Specifically, PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices. Subsequently, a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices. Thereafter, PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic. Finally, a masked physics-guided loss function (MPG-loss function) incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability. PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios, highlighting its robustness and sensitivity for metro OD demand prediction. A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助曦耀采纳,获得10
1秒前
曦耀发布了新的文献求助10
8秒前
童严柯完成签到,获得积分10
11秒前
无极微光应助童严柯采纳,获得20
14秒前
Criminology34应助oleskarabach采纳,获得10
14秒前
Criminology34应助oleskarabach采纳,获得10
15秒前
Criminology34应助oleskarabach采纳,获得10
15秒前
25秒前
清脆语海发布了新的文献求助10
28秒前
Hello应助清脆语海采纳,获得10
34秒前
44秒前
47秒前
samchen完成签到,获得积分10
49秒前
Jason发布了新的文献求助10
49秒前
tomtion发布了新的文献求助10
52秒前
ww完成签到,获得积分10
56秒前
1分钟前
1分钟前
1分钟前
文章多多完成签到,获得积分10
1分钟前
Jason完成签到,获得积分10
1分钟前
Una完成签到,获得积分10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
2分钟前
香菜张完成签到,获得积分10
2分钟前
席江海完成签到 ,获得积分10
2分钟前
2分钟前
曦耀发布了新的文献求助10
2分钟前
2分钟前
zhjl发布了新的文献求助10
2分钟前
wangfaqing942完成签到 ,获得积分10
3分钟前
3分钟前
c138zyx发布了新的文献求助10
3分钟前
3分钟前
科目三应助科研通管家采纳,获得10
4分钟前
JamesPei应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4749971
关于积分的说明 15007221
捐赠科研通 4797866
什么是DOI,文献DOI怎么找? 2563996
邀请新用户注册赠送积分活动 1522864
关于科研通互助平台的介绍 1482529