Removal of canopy shadows improved retrieval accuracy of individual apple tree crowns LAI and chlorophyll content using UAV multispectral imagery and PROSAIL model

遥感 天蓬 多光谱图像 环境科学 叶面积指数 多光谱模式识别 数学 地理 农学 生物 考古
作者
Chengjian Zhang,Zhibo Chen,Guijun Yang,Bo Xu,Haikuan Feng,Riqiang Chen,Ning Qi,Wenjie Zhang,Dan Zhao,Jinpeng Cheng,Hao Yang
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:221: 108959-108959 被引量:26
标识
DOI:10.1016/j.compag.2024.108959
摘要

The structural and chemical characteristics of individual apple tree crowns can indicate the nutritional and growth status of the trees, making them crucial for advancing orchard management practices. In this study, we collected multispectral imagery and ground validation data from two representative apple orchards in Beijing, China. We employed a hybrid inversion method to estimate the Leaf Area Index (LAI), Leaf Chlorophyll Content (LCC), and Canopy Chlorophyll Content (CCC) of individual apple tree crowns. Furthermore, we quantitatively evaluated the impact of canopy shading on the inversion results and mapped these traits at the scale of individual tree crowns (ITCs). To determine the optimal broad-band Vegetation Indices (VIs) for estimating LAI and LCC, we empirically analyzed 22 VIs using the PROSAIL simulation dataset. We constructed two measured datasets of canopy reflectance by masking canopy shadows, one containing shaded pixels and the other consisting of sunlit-only pixels. Using the Artificial Neural Network (ANN) algorithm and PROSAIL model, we developed a hybrid inversion model to assess the performance of the filtered VIs on the two measured datasets. The results demonstrated that TCARI/OSAVI and SR3 were the most accurate VIs for estimating LAI (including shaded pixels: R2 = 0.67, RMSE = 0.31 m2/m2; sunlit-only pixels: R2 = 0.74, RMSE = 0.28 m2/m2) and LCC (including shaded pixels: R2 = 0.70, RMSE = 7.11 μg/cm2; sunlit-only pixels: R2 = 0.73, RMSE = 6.63 μg/cm2) in the two measured reflectance datasets, respectively. Removing canopy shadows significantly improved the accuracy of LAI and LCC retrieval, although there was no significant difference in CCC retrieval accuracy (including shaded pixels: R2 = 0.78, RMSE = 31.25 μg/cm2; sunlit-only pixels: R2 = 0.79, RMSE = 28.48 μg/cm2). Moreover, we utilized UAV imaging multispectral data to map the estimated variability of leaf and canopy traits. The results revealed trait variability among different apple tree canopies, highlighting the potential of UAV imaging multispectral techniques in characterizing and mapping individual apple tree crown traits while capturing variability among crowns. We recommend performing canopy shading pixel masking to enhance the accuracy of ITCs trait retrieval.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
louge发布了新的文献求助10
刚刚
刚刚
Lny发布了新的文献求助20
1秒前
1秒前
1秒前
金cheng5完成签到,获得积分10
1秒前
1秒前
Kinkrit发布了新的文献求助10
2秒前
真的苦逼发布了新的文献求助10
2秒前
王乐多发布了新的文献求助10
3秒前
3秒前
sswbzh应助七个小矮人采纳,获得50
3秒前
六六六完成签到 ,获得积分10
4秒前
micius完成签到,获得积分10
4秒前
科目三应助踏实十三采纳,获得10
4秒前
5秒前
xixilamn发布了新的文献求助10
5秒前
5秒前
斯文败类应助时倾采纳,获得10
5秒前
LeeJYn完成签到,获得积分20
5秒前
6秒前
Rainbow发布了新的文献求助10
6秒前
在水一方应助youyouG采纳,获得10
6秒前
Rath11完成签到,获得积分10
6秒前
hehehe完成签到,获得积分10
6秒前
平淡远航完成签到,获得积分10
7秒前
7秒前
7秒前
LLL发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
RJ发布了新的文献求助10
8秒前
xcm77完成签到,获得积分10
9秒前
完美梨愁发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
李爱国应助xiw采纳,获得10
9秒前
keke完成签到,获得积分10
10秒前
10秒前
BABY五齿完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727863
求助须知:如何正确求助?哪些是违规求助? 5310392
关于积分的说明 15312447
捐赠科研通 4875237
什么是DOI,文献DOI怎么找? 2618649
邀请新用户注册赠送积分活动 1568278
关于科研通互助平台的介绍 1524932