Accelerated end-to-end chemical synthesis development with large language models

端到端原则 计算机科学 人工智能
作者
Yixiang Ruan,Chenyin Lu,Ning Xu,Jian Zhang,Jun Xuan,Jian‐Zhang Pan,Qun Fang,Hanyu Gao,Xiaodong Shen,Ning Ye,Qiang Zhang,Yiming Mo
标识
DOI:10.26434/chemrxiv-2024-6wmg4
摘要

The rapid emergence of large language model (LLM) technology presents significant opportunities to facilitate the development of synthetic reactions. In this work, we leveraged the power of GPT-4 to build a multi-agent system to handle fundamental tasks involved throughout the chemical synthesis development process. The multi-agent system comprises six specialized LLM-based agents, including Literature Scouter, Experiment Designer, Hardware Executor, Spectrum Analyzer, Separation Instructor, and Result Interpreter, which are pre-prompted to accomplish the designated tasks. A web application was built with the multi-agent system as the backend to allow chemist users to interact with experimental platforms and analyze results via natural language, thus, requiring zero-coding skills to allow easy access for all chemists. We demonstrated this multi-agent system on the development of a recently developed copper/TEMPO catalyzed aerobic alcohol oxidation to aldehyde reaction, and this LLM multi-agent copiloted end-to-end reaction development process includes: literature search and information extraction, substrate scope and condition screening, reaction kinetics study, reaction condition optimization, reaction scale-up and product purification. This work showcases the trilogy among chemist users, LLM-based agents, and automated experimental platforms to reform the traditional expert-centric and labor-intensive reaction development workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小紫发布了新的文献求助100
刚刚
刚刚
自然的李完成签到 ,获得积分10
刚刚
马霄鑫发布了新的文献求助10
2秒前
LF发布了新的文献求助10
2秒前
邵绝山完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
积极的尔竹完成签到,获得积分10
2秒前
打打应助pp1230采纳,获得10
3秒前
xingkongdan完成签到 ,获得积分10
3秒前
小甘看世界完成签到,获得积分10
4秒前
minhduc发布了新的文献求助10
5秒前
5秒前
科研通AI5应助小元采纳,获得10
6秒前
共享精神应助星星星采纳,获得10
6秒前
6秒前
miaowuuuuuuu完成签到 ,获得积分10
6秒前
BBL完成签到 ,获得积分10
7秒前
7秒前
FashionBoy应助19111867526采纳,获得10
7秒前
7秒前
任性的小懒猪完成签到 ,获得积分10
8秒前
8秒前
noodles发布了新的文献求助10
8秒前
西红柿没错完成签到,获得积分20
8秒前
fan驳回了Jasper应助
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
Leon应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得50
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
zhou应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
CipherSage应助科研通管家采纳,获得30
10秒前
10秒前
Leon应助科研通管家采纳,获得20
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662822
求助须知:如何正确求助?哪些是违规求助? 3223668
关于积分的说明 9752507
捐赠科研通 2933578
什么是DOI,文献DOI怎么找? 1606153
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734771