Extraction of laser stripe centerlines from translucent optical components using a multi-scale attention deep neural network

人工智能 比例(比率) 人工神经网络 激光器 计算机科学 萃取(化学) 模式识别(心理学) 计算机视觉 光学 物理 地理 地图学 化学 色谱法
作者
Hao Jiang,Weijie Fu,Xinming Zhang,Chaoxia Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 085404-085404
标识
DOI:10.1088/1361-6501/ad480c
摘要

Abstract The precise extraction of laser stripe centerlines is critical for line-laser 3D scanning systems. However, conventional methods relying on threshold segmentation and morphological operations face significant challenges when confronted with pervasive optical phenomena, including specular reflection, scattering, and bleeding, which are commonly observed in translucent optical components. These methods typically require complex preprocessing procedures and often yield poor precision in centerline extraction. In this paper, we introduce a novel learning-based approach, complemented by a meticulously curated dataset, explicitly designed to address these challenges. Our proposed method leverages a multi-scale attention U-Net-like architecture, initially tasked with the segmentation of laser stripes from the complex background environment. Subsequently, it employs the Steger algorithm for the precise extraction of laser stripe centerlines. The experimental results, obtained by comprehensively evaluating real-world captured images, clearly demonstrate the effectiveness of our deep neural network combined with the Steger algorithm. This combined approach exhibits exceptional accuracy even when challenged by the interferences from specular reflection, scattering, and bleeding artifacts. Specifically, our method achieves a mean intersection over union (mIoU) of 84.71% for the laser stripe detection task, accompanied by a mean square error (MSE) of 10.371 pixels. Also, the average execution time for the centerline extraction task is notably efficient at 0.125 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
了然完成签到 ,获得积分10
1秒前
jxp完成签到,获得积分10
1秒前
jojo完成签到 ,获得积分10
2秒前
2秒前
勤劳落雁完成签到 ,获得积分10
2秒前
5秒前
爆米花应助科研通管家采纳,获得30
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
田様应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
打打应助科研通管家采纳,获得10
6秒前
RC_Wang应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
赘婿应助Quzhengkai采纳,获得10
6秒前
sutharsons应助科研通管家采纳,获得30
6秒前
李爱国应助科研通管家采纳,获得30
7秒前
7秒前
7秒前
调研昵称发布了新的文献求助10
7秒前
CodeCraft应助清新的苑博采纳,获得10
8秒前
所所应助Chen采纳,获得10
9秒前
11秒前
11秒前
goldenfleece发布了新的文献求助10
11秒前
怕黑的钥匙完成签到 ,获得积分10
11秒前
zhangsf88完成签到,获得积分10
11秒前
科研通AI5应助科研小能手采纳,获得10
11秒前
乐乐应助热情芷荷采纳,获得10
12秒前
想发sci完成签到,获得积分10
12秒前
kaifeiQi完成签到,获得积分10
12秒前
共享精神应助Elsa采纳,获得10
12秒前
12秒前
Owen应助怎么可能会凉采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808