Extraction of laser stripe centerlines from translucent optical components using a multi-scale attention deep neural network

人工智能 比例(比率) 人工神经网络 激光器 计算机科学 萃取(化学) 模式识别(心理学) 计算机视觉 光学 物理 地理 地图学 化学 色谱法
作者
Hao Jiang,Weijie Fu,Xinming Zhang,Chaoxia Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 085404-085404
标识
DOI:10.1088/1361-6501/ad480c
摘要

Abstract The precise extraction of laser stripe centerlines is critical for line-laser 3D scanning systems. However, conventional methods relying on threshold segmentation and morphological operations face significant challenges when confronted with pervasive optical phenomena, including specular reflection, scattering, and bleeding, which are commonly observed in translucent optical components. These methods typically require complex preprocessing procedures and often yield poor precision in centerline extraction. In this paper, we introduce a novel learning-based approach, complemented by a meticulously curated dataset, explicitly designed to address these challenges. Our proposed method leverages a multi-scale attention U-Net-like architecture, initially tasked with the segmentation of laser stripes from the complex background environment. Subsequently, it employs the Steger algorithm for the precise extraction of laser stripe centerlines. The experimental results, obtained by comprehensively evaluating real-world captured images, clearly demonstrate the effectiveness of our deep neural network combined with the Steger algorithm. This combined approach exhibits exceptional accuracy even when challenged by the interferences from specular reflection, scattering, and bleeding artifacts. Specifically, our method achieves a mean intersection over union (mIoU) of 84.71% for the laser stripe detection task, accompanied by a mean square error (MSE) of 10.371 pixels. Also, the average execution time for the centerline extraction task is notably efficient at 0.125 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光中道发布了新的文献求助30
1秒前
一匹黑狼发布了新的文献求助10
2秒前
研友_84mlkL发布了新的文献求助10
2秒前
susu发布了新的文献求助10
3秒前
观自在完成签到 ,获得积分10
3秒前
3秒前
huo应助JS姜硕采纳,获得10
3秒前
4秒前
苗条的凝雁完成签到,获得积分10
4秒前
Dr.yan完成签到,获得积分10
4秒前
朱猪侠发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
6秒前
王蓉完成签到,获得积分10
6秒前
bkagyin应助暮潇牧笑采纳,获得10
6秒前
白白发布了新的文献求助10
6秒前
7秒前
完美世界应助小新小新采纳,获得10
8秒前
西瘡发布了新的文献求助10
9秒前
9秒前
开朗寇发布了新的文献求助10
9秒前
10秒前
林希发布了新的文献求助10
10秒前
科研通AI2S应助繁荣的又夏采纳,获得10
10秒前
忆往昔发布了新的文献求助10
10秒前
yuk发布了新的文献求助10
10秒前
11秒前
11秒前
搜集达人应助pai先生采纳,获得10
11秒前
11秒前
我是老大应助旦皋采纳,获得10
12秒前
13秒前
14秒前
炙热水风发布了新的文献求助10
14秒前
swamp发布了新的文献求助10
14秒前
14秒前
15秒前
szy完成签到,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708