Extraction of laser stripe centerlines from translucent optical components using a multi-scale attention deep neural network

人工智能 比例(比率) 人工神经网络 激光器 计算机科学 萃取(化学) 模式识别(心理学) 计算机视觉 光学 物理 地理 地图学 化学 色谱法
作者
Hao Jiang,Weijie Fu,Xinming Zhang,Chaoxia Zhang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (8): 085404-085404
标识
DOI:10.1088/1361-6501/ad480c
摘要

Abstract The precise extraction of laser stripe centerlines is critical for line-laser 3D scanning systems. However, conventional methods relying on threshold segmentation and morphological operations face significant challenges when confronted with pervasive optical phenomena, including specular reflection, scattering, and bleeding, which are commonly observed in translucent optical components. These methods typically require complex preprocessing procedures and often yield poor precision in centerline extraction. In this paper, we introduce a novel learning-based approach, complemented by a meticulously curated dataset, explicitly designed to address these challenges. Our proposed method leverages a multi-scale attention U-Net-like architecture, initially tasked with the segmentation of laser stripes from the complex background environment. Subsequently, it employs the Steger algorithm for the precise extraction of laser stripe centerlines. The experimental results, obtained by comprehensively evaluating real-world captured images, clearly demonstrate the effectiveness of our deep neural network combined with the Steger algorithm. This combined approach exhibits exceptional accuracy even when challenged by the interferences from specular reflection, scattering, and bleeding artifacts. Specifically, our method achieves a mean intersection over union (mIoU) of 84.71% for the laser stripe detection task, accompanied by a mean square error (MSE) of 10.371 pixels. Also, the average execution time for the centerline extraction task is notably efficient at 0.125 s.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大方的蓝发布了新的文献求助10
2秒前
NexusExplorer应助小小怪下士采纳,获得10
2秒前
墨枝发布了新的文献求助10
2秒前
华仔应助香菜芋头采纳,获得10
3秒前
4秒前
4秒前
负责从丹完成签到,获得积分10
7秒前
7秒前
8秒前
LZQ应助weixiaosi采纳,获得10
8秒前
武雨寒发布了新的文献求助10
9秒前
丘比特应助代代采纳,获得10
9秒前
zhzssaijj发布了新的文献求助10
10秒前
海燕发布了新的文献求助10
10秒前
所所应助超级柜子采纳,获得10
11秒前
12秒前
嘻嘻嘻嘻完成签到,获得积分20
13秒前
Ay关注了科研通微信公众号
13秒前
13秒前
毕襄完成签到,获得积分20
14秒前
YUQIONG完成签到,获得积分20
14秒前
ABEDO发布了新的文献求助10
14秒前
15秒前
墨枝完成签到,获得积分10
15秒前
tongluobing完成签到,获得积分10
16秒前
17秒前
YouD完成签到,获得积分10
18秒前
19秒前
大方的蓝完成签到,获得积分10
19秒前
19秒前
顾矜应助zhzssaijj采纳,获得10
20秒前
20秒前
yfy发布了新的文献求助10
22秒前
江江发布了新的文献求助10
23秒前
23秒前
ll应助白日焰火采纳,获得10
23秒前
ll应助白日焰火采纳,获得10
23秒前
ll应助白日焰火采纳,获得10
24秒前
tianmeiling完成签到 ,获得积分10
24秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528