A Knowledge Distillation Compression Algorithm for Ship Speed and Energy Coordinated Optimal Scheduling Model based on Deep Reinforcement Learning

强化学习 蒸馏 计算机科学 调度(生产过程) 人工智能 算法 数学优化 数学 化学 有机化学
作者
Haipeng Xiao,Lijun Fu,Chengya Shang,Xianqiang Bao,Xinghua Xu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1
标识
DOI:10.1109/tte.2024.3398991
摘要

Ship optimization scheduling, using deep reinforcement learning (DRL), has been extensively researched and implemented. Notably, the deep Q-learning algorithm (DQN) has achieved successful deployment within the optimization scheduling domain. However, there is currently almost no research on compressing and accelerating DQN-based All-Electric Ships (AES) energy scheduling models. This paper proposes a DQN knowledge distillation (DQN-KD) compression algorithm that incorporates the teacher replay memory pool (T-rpm) learning mechanism for compression problem of the DQN-based optimization scheduling model of AES. The DQN-KD algorithm can effectively transfer the knowledge of teacher agent to student agent, and further improve the training efficiency and performance of student agent using the T-rpm learning mechanism. The experimental results conduct on the AES system demonstrate that our proposed compression method is highly effective. Comparing with the teacher model, the Parameters, FLOP and Memory of the student model are significantly reduced by 87.7%, 92.61% and 88.3% respectively. Interestingly, despite these significant reductions, the student agent only experiences a marginal increase of 0.33% in economic consumption compared to the teacher agent. Furthermore, when the Parameters of the student agent are further reduced by 47.5%, and FLOPs by 50.4%, along with a 47.3% reduction in Memory, the resulting increase in economic consumption is only 0.59% compared to the teacher agent. Importantly, even with these notable reductions, the compressed agent maintained strong generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羽化成仙完成签到 ,获得积分10
刚刚
今后应助Lee采纳,获得20
刚刚
飞飞鼠完成签到,获得积分10
刚刚
科研小白发布了新的文献求助10
刚刚
ant完成签到,获得积分10
刚刚
科研小王完成签到,获得积分10
1秒前
聪明大王完成签到 ,获得积分10
1秒前
hhj02完成签到,获得积分10
2秒前
fannyeast发布了新的文献求助10
2秒前
李雯完成签到,获得积分10
2秒前
2秒前
vv发布了新的文献求助100
2秒前
所所应助高高白猫采纳,获得10
2秒前
berber发布了新的文献求助10
4秒前
科研小王发布了新的文献求助10
4秒前
4秒前
4秒前
AURORA发布了新的文献求助10
4秒前
4秒前
5秒前
7秒前
暮寻屿苗完成签到 ,获得积分10
7秒前
7秒前
HYN发布了新的文献求助10
8秒前
博儒艾特发布了新的文献求助10
9秒前
牧妙芹发布了新的文献求助10
9秒前
喜东东完成签到,获得积分10
10秒前
lily完成签到,获得积分10
10秒前
完美世界应助飞飞鼠采纳,获得10
10秒前
太叔丹翠完成签到 ,获得积分10
10秒前
binshier完成签到,获得积分10
10秒前
小h发布了新的文献求助10
11秒前
11秒前
pangpang完成签到,获得积分10
11秒前
12秒前
rh完成签到,获得积分10
12秒前
任性完成签到,获得积分10
12秒前
倒霉兔子完成签到,获得积分0
13秒前
七月完成签到 ,获得积分10
13秒前
14秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729599
求助须知:如何正确求助?哪些是违规求助? 3274630
关于积分的说明 9987565
捐赠科研通 2989918
什么是DOI,文献DOI怎么找? 1640809
邀请新用户注册赠送积分活动 779408
科研通“疑难数据库(出版商)”最低求助积分说明 748200