A Knowledge Distillation Compression Algorithm for Ship Speed and Energy Coordinated Optimal Scheduling Model based on Deep Reinforcement Learning

强化学习 蒸馏 计算机科学 调度(生产过程) 人工智能 算法 数学优化 数学 化学 有机化学
作者
Haipeng Xiao,Lijun Fu,Chengya Shang,Xianqiang Bao,Xinghua Xu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1
标识
DOI:10.1109/tte.2024.3398991
摘要

Ship optimization scheduling, using deep reinforcement learning (DRL), has been extensively researched and implemented. Notably, the deep Q-learning algorithm (DQN) has achieved successful deployment within the optimization scheduling domain. However, there is currently almost no research on compressing and accelerating DQN-based All-Electric Ships (AES) energy scheduling models. This paper proposes a DQN knowledge distillation (DQN-KD) compression algorithm that incorporates the teacher replay memory pool (T-rpm) learning mechanism for compression problem of the DQN-based optimization scheduling model of AES. The DQN-KD algorithm can effectively transfer the knowledge of teacher agent to student agent, and further improve the training efficiency and performance of student agent using the T-rpm learning mechanism. The experimental results conduct on the AES system demonstrate that our proposed compression method is highly effective. Comparing with the teacher model, the Parameters, FLOP and Memory of the student model are significantly reduced by 87.7%, 92.61% and 88.3% respectively. Interestingly, despite these significant reductions, the student agent only experiences a marginal increase of 0.33% in economic consumption compared to the teacher agent. Furthermore, when the Parameters of the student agent are further reduced by 47.5%, and FLOPs by 50.4%, along with a 47.3% reduction in Memory, the resulting increase in economic consumption is only 0.59% compared to the teacher agent. Importantly, even with these notable reductions, the compressed agent maintained strong generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇乐曲发布了新的文献求助10
1秒前
一枝杷枇发布了新的文献求助10
1秒前
1秒前
七不七葡萄完成签到,获得积分10
1秒前
2秒前
希望天下0贩的0应助若离采纳,获得10
2秒前
2秒前
罗城完成签到,获得积分10
2秒前
曹影完成签到,获得积分10
2秒前
康K发布了新的文献求助30
2秒前
稚生w发布了新的文献求助10
2秒前
3秒前
3秒前
似我完成签到,获得积分10
3秒前
4秒前
哎哟很烦发布了新的文献求助10
4秒前
青石完成签到,获得积分10
4秒前
Zhijiuz发布了新的文献求助10
5秒前
xiaobai应助白白采纳,获得10
5秒前
nkdailingyun发布了新的文献求助10
5秒前
科研通AI6应助8y24dp采纳,获得10
6秒前
独特雁枫发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
hhhhh完成签到 ,获得积分10
7秒前
清荔发布了新的文献求助10
8秒前
芳芳子发布了新的文献求助10
8秒前
8秒前
半柚发布了新的文献求助10
9秒前
弈天发布了新的文献求助20
9秒前
10秒前
科研小白完成签到,获得积分10
10秒前
白晨完成签到,获得积分10
10秒前
炸弹发布了新的文献求助10
10秒前
科研通AI6应助sunchem采纳,获得10
10秒前
11秒前
胖大海完成签到,获得积分20
11秒前
11秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442517
求助须知:如何正确求助?哪些是违规求助? 4552741
关于积分的说明 14238372
捐赠科研通 4474018
什么是DOI,文献DOI怎么找? 2451837
邀请新用户注册赠送积分活动 1442715
关于科研通互助平台的介绍 1418593