A Knowledge Distillation Compression Algorithm for Ship Speed and Energy Coordinated Optimal Scheduling Model based on Deep Reinforcement Learning

强化学习 蒸馏 计算机科学 调度(生产过程) 人工智能 算法 数学优化 数学 化学 有机化学
作者
Haipeng Xiao,Lijun Fu,Chengya Shang,Xianqiang Bao,Xinghua Xu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1
标识
DOI:10.1109/tte.2024.3398991
摘要

Ship optimization scheduling, using deep reinforcement learning (DRL), has been extensively researched and implemented. Notably, the deep Q-learning algorithm (DQN) has achieved successful deployment within the optimization scheduling domain. However, there is currently almost no research on compressing and accelerating DQN-based All-Electric Ships (AES) energy scheduling models. This paper proposes a DQN knowledge distillation (DQN-KD) compression algorithm that incorporates the teacher replay memory pool (T-rpm) learning mechanism for compression problem of the DQN-based optimization scheduling model of AES. The DQN-KD algorithm can effectively transfer the knowledge of teacher agent to student agent, and further improve the training efficiency and performance of student agent using the T-rpm learning mechanism. The experimental results conduct on the AES system demonstrate that our proposed compression method is highly effective. Comparing with the teacher model, the Parameters, FLOP and Memory of the student model are significantly reduced by 87.7%, 92.61% and 88.3% respectively. Interestingly, despite these significant reductions, the student agent only experiences a marginal increase of 0.33% in economic consumption compared to the teacher agent. Furthermore, when the Parameters of the student agent are further reduced by 47.5%, and FLOPs by 50.4%, along with a 47.3% reduction in Memory, the resulting increase in economic consumption is only 0.59% compared to the teacher agent. Importantly, even with these notable reductions, the compressed agent maintained strong generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心谷梦完成签到,获得积分10
1秒前
星辰大海应助迅速的雁山采纳,获得10
1秒前
shelemi发布了新的文献求助10
1秒前
2秒前
2秒前
Tianling完成签到,获得积分0
2秒前
3秒前
3秒前
4秒前
4秒前
5秒前
luiii发布了新的文献求助10
6秒前
杳鸢应助clone2012采纳,获得10
6秒前
ypz发布了新的文献求助10
8秒前
小黑马完成签到,获得积分10
9秒前
打打应助886采纳,获得10
9秒前
墨冉完成签到,获得积分10
9秒前
9秒前
kk完成签到,获得积分10
9秒前
开心的含雁完成签到,获得积分10
10秒前
桐桐应助许一采纳,获得10
11秒前
13秒前
qqqxl完成签到,获得积分10
14秒前
郭亚楠完成签到,获得积分10
14秒前
younghippo发布了新的文献求助10
16秒前
17秒前
gl198941发布了新的文献求助10
17秒前
xianluomeihao完成签到,获得积分10
17秒前
Ella发布了新的文献求助10
17秒前
18秒前
19秒前
DT完成签到,获得积分10
20秒前
小蘑菇应助kk采纳,获得10
21秒前
彩色岂愈发布了新的文献求助10
22秒前
Phyllis发布了新的文献求助10
23秒前
23秒前
24秒前
24秒前
JJ完成签到,获得积分10
24秒前
ember6应助886采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950931
求助须知:如何正确求助?哪些是违规求助? 3496322
关于积分的说明 11081419
捐赠科研通 3226783
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868029
科研通“疑难数据库(出版商)”最低求助积分说明 800993