A Knowledge Distillation Compression Algorithm for Ship Speed and Energy Coordinated Optimal Scheduling Model based on Deep Reinforcement Learning

强化学习 蒸馏 计算机科学 调度(生产过程) 人工智能 算法 数学优化 数学 化学 有机化学
作者
Haipeng Xiao,Lijun Fu,Chengya Shang,Xianqiang Bao,Xinghua Xu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1
标识
DOI:10.1109/tte.2024.3398991
摘要

Ship optimization scheduling, using deep reinforcement learning (DRL), has been extensively researched and implemented. Notably, the deep Q-learning algorithm (DQN) has achieved successful deployment within the optimization scheduling domain. However, there is currently almost no research on compressing and accelerating DQN-based All-Electric Ships (AES) energy scheduling models. This paper proposes a DQN knowledge distillation (DQN-KD) compression algorithm that incorporates the teacher replay memory pool (T-rpm) learning mechanism for compression problem of the DQN-based optimization scheduling model of AES. The DQN-KD algorithm can effectively transfer the knowledge of teacher agent to student agent, and further improve the training efficiency and performance of student agent using the T-rpm learning mechanism. The experimental results conduct on the AES system demonstrate that our proposed compression method is highly effective. Comparing with the teacher model, the Parameters, FLOP and Memory of the student model are significantly reduced by 87.7%, 92.61% and 88.3% respectively. Interestingly, despite these significant reductions, the student agent only experiences a marginal increase of 0.33% in economic consumption compared to the teacher agent. Furthermore, when the Parameters of the student agent are further reduced by 47.5%, and FLOPs by 50.4%, along with a 47.3% reduction in Memory, the resulting increase in economic consumption is only 0.59% compared to the teacher agent. Importantly, even with these notable reductions, the compressed agent maintained strong generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱笑白完成签到 ,获得积分10
4秒前
Nuyoah完成签到,获得积分10
5秒前
6秒前
6秒前
花海完成签到 ,获得积分10
6秒前
ShawnJohn完成签到,获得积分10
6秒前
7秒前
8秒前
Akim应助科研通管家采纳,获得10
8秒前
哈基米德应助科研通管家采纳,获得20
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
nooooorae应助科研通管家采纳,获得20
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
哈基米德应助科研通管家采纳,获得20
9秒前
浮游应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
10秒前
wanci应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得30
10秒前
10秒前
10秒前
10秒前
微笑菠萝发布了新的文献求助10
11秒前
苏紫梗桔发布了新的文献求助10
12秒前
细心盼晴发布了新的文献求助10
13秒前
13秒前
假装有昵称完成签到 ,获得积分10
14秒前
滴迪氐媂发布了新的文献求助10
14秒前
充电宝应助王煜采纳,获得10
14秒前
蹲派战士完成签到,获得积分20
15秒前
蕴蝶发布了新的文献求助10
15秒前
aml驳回了SHT应助
16秒前
桐桐应助明亮不乐采纳,获得10
16秒前
独特的友琴完成签到 ,获得积分10
16秒前
科研通AI6应助SHAOXiaoqian采纳,获得30
17秒前
18秒前
王五一完成签到 ,获得积分10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5219352
求助须知:如何正确求助?哪些是违规求助? 4393136
关于积分的说明 13678244
捐赠科研通 4255771
什么是DOI,文献DOI怎么找? 2335181
邀请新用户注册赠送积分活动 1332818
关于科研通互助平台的介绍 1287059