A Knowledge Distillation Compression Algorithm for Ship Speed and Energy Coordinated Optimal Scheduling Model based on Deep Reinforcement Learning

强化学习 蒸馏 计算机科学 调度(生产过程) 人工智能 算法 数学优化 数学 化学 有机化学
作者
Haipeng Xiao,Lijun Fu,Chengya Shang,Xianqiang Bao,Xinghua Xu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1
标识
DOI:10.1109/tte.2024.3398991
摘要

Ship optimization scheduling, using deep reinforcement learning (DRL), has been extensively researched and implemented. Notably, the deep Q-learning algorithm (DQN) has achieved successful deployment within the optimization scheduling domain. However, there is currently almost no research on compressing and accelerating DQN-based All-Electric Ships (AES) energy scheduling models. This paper proposes a DQN knowledge distillation (DQN-KD) compression algorithm that incorporates the teacher replay memory pool (T-rpm) learning mechanism for compression problem of the DQN-based optimization scheduling model of AES. The DQN-KD algorithm can effectively transfer the knowledge of teacher agent to student agent, and further improve the training efficiency and performance of student agent using the T-rpm learning mechanism. The experimental results conduct on the AES system demonstrate that our proposed compression method is highly effective. Comparing with the teacher model, the Parameters, FLOP and Memory of the student model are significantly reduced by 87.7%, 92.61% and 88.3% respectively. Interestingly, despite these significant reductions, the student agent only experiences a marginal increase of 0.33% in economic consumption compared to the teacher agent. Furthermore, when the Parameters of the student agent are further reduced by 47.5%, and FLOPs by 50.4%, along with a 47.3% reduction in Memory, the resulting increase in economic consumption is only 0.59% compared to the teacher agent. Importantly, even with these notable reductions, the compressed agent maintained strong generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
连难胜完成签到 ,获得积分10
刚刚
zhouyuandshu完成签到,获得积分10
1秒前
可夫司机完成签到 ,获得积分10
4秒前
John完成签到,获得积分10
8秒前
jlj完成签到,获得积分10
12秒前
tuanhust完成签到,获得积分10
15秒前
吹泡泡的红豆完成签到 ,获得积分10
16秒前
哈哈哈哈哈哈哈完成签到 ,获得积分10
18秒前
23秒前
肥羊七号完成签到 ,获得积分10
33秒前
btcat完成签到,获得积分10
33秒前
35秒前
genomed完成签到,获得积分0
42秒前
胖胖完成签到 ,获得积分10
47秒前
48秒前
gangxiaxuan给gangxiaxuan的求助进行了留言
51秒前
Cold-Drink-Shop完成签到,获得积分10
58秒前
唯有一个心完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
森淼完成签到 ,获得积分10
1分钟前
黄道婆完成签到 ,获得积分10
1分钟前
鲁滨逊完成签到 ,获得积分10
1分钟前
gangxiaxuan发布了新的文献求助20
1分钟前
活力的妙芙完成签到,获得积分10
1分钟前
缓慢雅青完成签到 ,获得积分10
1分钟前
莎莎完成签到 ,获得积分10
1分钟前
小文子完成签到,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
QY完成签到 ,获得积分10
1分钟前
ni完成签到 ,获得积分10
1分钟前
凉面完成签到 ,获得积分10
1分钟前
等待的时光完成签到,获得积分10
1分钟前
诚心代芙完成签到 ,获得积分10
1分钟前
chenyiyi完成签到 ,获得积分10
1分钟前
令狐新竹完成签到 ,获得积分10
1分钟前
酷酷映冬完成签到 ,获得积分10
1分钟前
Lz555完成签到 ,获得积分10
1分钟前
zhilianghui0807完成签到 ,获得积分10
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167235
求助须知:如何正确求助?哪些是违规求助? 2818702
关于积分的说明 7921990
捐赠科研通 2478475
什么是DOI,文献DOI怎么找? 1320350
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443