清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Knowledge Distillation Compression Algorithm for Ship Speed and Energy Coordinated Optimal Scheduling Model based on Deep Reinforcement Learning

强化学习 蒸馏 计算机科学 调度(生产过程) 人工智能 算法 数学优化 数学 化学 有机化学
作者
Haipeng Xiao,Lijun Fu,Chengya Shang,Xianqiang Bao,Xinghua Xu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1
标识
DOI:10.1109/tte.2024.3398991
摘要

Ship optimization scheduling, using deep reinforcement learning (DRL), has been extensively researched and implemented. Notably, the deep Q-learning algorithm (DQN) has achieved successful deployment within the optimization scheduling domain. However, there is currently almost no research on compressing and accelerating DQN-based All-Electric Ships (AES) energy scheduling models. This paper proposes a DQN knowledge distillation (DQN-KD) compression algorithm that incorporates the teacher replay memory pool (T-rpm) learning mechanism for compression problem of the DQN-based optimization scheduling model of AES. The DQN-KD algorithm can effectively transfer the knowledge of teacher agent to student agent, and further improve the training efficiency and performance of student agent using the T-rpm learning mechanism. The experimental results conduct on the AES system demonstrate that our proposed compression method is highly effective. Comparing with the teacher model, the Parameters, FLOP and Memory of the student model are significantly reduced by 87.7%, 92.61% and 88.3% respectively. Interestingly, despite these significant reductions, the student agent only experiences a marginal increase of 0.33% in economic consumption compared to the teacher agent. Furthermore, when the Parameters of the student agent are further reduced by 47.5%, and FLOPs by 50.4%, along with a 47.3% reduction in Memory, the resulting increase in economic consumption is only 0.59% compared to the teacher agent. Importantly, even with these notable reductions, the compressed agent maintained strong generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
chenyue233完成签到,获得积分10
10秒前
26秒前
量子星尘发布了新的文献求助50
31秒前
花园里的蒜完成签到 ,获得积分0
53秒前
科研通AI6应助科研通管家采纳,获得10
57秒前
58秒前
loen完成签到,获得积分10
1分钟前
多亿点完成签到 ,获得积分10
1分钟前
shuang完成签到 ,获得积分10
1分钟前
Ava应助michael_suo采纳,获得10
1分钟前
1分钟前
husi发布了新的文献求助10
1分钟前
1分钟前
husi完成签到 ,获得积分20
2分钟前
在水一方应助我爱读文献采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
michael_suo发布了新的文献求助10
2分钟前
michael_suo完成签到,获得积分10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
爱吃皮囊的大馋虫完成签到 ,获得积分10
3分钟前
大医仁心完成签到 ,获得积分10
3分钟前
馆长举报i beLIeVe求助涉嫌违规
3分钟前
迷茫的一代完成签到,获得积分10
3分钟前
馆长举报小黄瓜896求助涉嫌违规
3分钟前
馆长举报kkkkk求助涉嫌违规
4分钟前
超级兵12完成签到,获得积分10
4分钟前
程小柒完成签到 ,获得积分10
4分钟前
馆长举报Yoli求助涉嫌违规
4分钟前
馆长举报欢喜的海求助涉嫌违规
4分钟前
lei029发布了新的文献求助30
4分钟前
馆长举报耶耶耶y求助涉嫌违规
4分钟前
Wenjie_Xin完成签到,获得积分10
4分钟前
馆长举报友好慕卉求助涉嫌违规
4分钟前
馆长举报墨尘求助涉嫌违规
5分钟前
lei029完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596533
求助须知:如何正确求助?哪些是违规求助? 4008426
关于积分的说明 12409207
捐赠科研通 3687443
什么是DOI,文献DOI怎么找? 2032420
邀请新用户注册赠送积分活动 1065646
科研通“疑难数据库(出版商)”最低求助积分说明 950967