亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Knowledge Distillation Compression Algorithm for Ship Speed and Energy Coordinated Optimal Scheduling Model based on Deep Reinforcement Learning

强化学习 蒸馏 计算机科学 调度(生产过程) 人工智能 算法 数学优化 数学 化学 有机化学
作者
Haipeng Xiao,Lijun Fu,Chengya Shang,Xianqiang Bao,Xinghua Xu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1
标识
DOI:10.1109/tte.2024.3398991
摘要

Ship optimization scheduling, using deep reinforcement learning (DRL), has been extensively researched and implemented. Notably, the deep Q-learning algorithm (DQN) has achieved successful deployment within the optimization scheduling domain. However, there is currently almost no research on compressing and accelerating DQN-based All-Electric Ships (AES) energy scheduling models. This paper proposes a DQN knowledge distillation (DQN-KD) compression algorithm that incorporates the teacher replay memory pool (T-rpm) learning mechanism for compression problem of the DQN-based optimization scheduling model of AES. The DQN-KD algorithm can effectively transfer the knowledge of teacher agent to student agent, and further improve the training efficiency and performance of student agent using the T-rpm learning mechanism. The experimental results conduct on the AES system demonstrate that our proposed compression method is highly effective. Comparing with the teacher model, the Parameters, FLOP and Memory of the student model are significantly reduced by 87.7%, 92.61% and 88.3% respectively. Interestingly, despite these significant reductions, the student agent only experiences a marginal increase of 0.33% in economic consumption compared to the teacher agent. Furthermore, when the Parameters of the student agent are further reduced by 47.5%, and FLOPs by 50.4%, along with a 47.3% reduction in Memory, the resulting increase in economic consumption is only 0.59% compared to the teacher agent. Importantly, even with these notable reductions, the compressed agent maintained strong generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123321完成签到 ,获得积分10
37秒前
gszy1975发布了新的文献求助10
47秒前
48秒前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
lixiaorui发布了新的文献求助10
1分钟前
CipherSage应助难过的踏歌采纳,获得10
1分钟前
1分钟前
MYYYZ发布了新的文献求助10
1分钟前
酒渡完成签到,获得积分10
1分钟前
1分钟前
lixiaorui发布了新的文献求助30
1分钟前
2分钟前
帅气琦发布了新的文献求助10
2分钟前
2分钟前
nchudddd发布了新的文献求助10
2分钟前
领导范儿应助帅气琦采纳,获得10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
欣欣完成签到 ,获得积分10
3分钟前
研友_VZG7GZ应助MY采纳,获得30
3分钟前
3分钟前
和风完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254426
求助须知:如何正确求助?哪些是违规求助? 4417336
关于积分的说明 13751271
捐赠科研通 4290010
什么是DOI,文献DOI怎么找? 2353954
邀请新用户注册赠送积分活动 1350565
关于科研通互助平台的介绍 1310718