A Knowledge Distillation Compression Algorithm for Ship Speed and Energy Coordinated Optimal Scheduling Model based on Deep Reinforcement Learning

强化学习 蒸馏 计算机科学 调度(生产过程) 人工智能 算法 数学优化 数学 化学 有机化学
作者
Haipeng Xiao,Lijun Fu,Chengya Shang,Xianqiang Bao,Xinghua Xu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1
标识
DOI:10.1109/tte.2024.3398991
摘要

Ship optimization scheduling, using deep reinforcement learning (DRL), has been extensively researched and implemented. Notably, the deep Q-learning algorithm (DQN) has achieved successful deployment within the optimization scheduling domain. However, there is currently almost no research on compressing and accelerating DQN-based All-Electric Ships (AES) energy scheduling models. This paper proposes a DQN knowledge distillation (DQN-KD) compression algorithm that incorporates the teacher replay memory pool (T-rpm) learning mechanism for compression problem of the DQN-based optimization scheduling model of AES. The DQN-KD algorithm can effectively transfer the knowledge of teacher agent to student agent, and further improve the training efficiency and performance of student agent using the T-rpm learning mechanism. The experimental results conduct on the AES system demonstrate that our proposed compression method is highly effective. Comparing with the teacher model, the Parameters, FLOP and Memory of the student model are significantly reduced by 87.7%, 92.61% and 88.3% respectively. Interestingly, despite these significant reductions, the student agent only experiences a marginal increase of 0.33% in economic consumption compared to the teacher agent. Furthermore, when the Parameters of the student agent are further reduced by 47.5%, and FLOPs by 50.4%, along with a 47.3% reduction in Memory, the resulting increase in economic consumption is only 0.59% compared to the teacher agent. Importantly, even with these notable reductions, the compressed agent maintained strong generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助一位用户采纳,获得10
1秒前
科研通AI6应助妍妍采纳,获得10
1秒前
海棠听风完成签到,获得积分10
3秒前
李健应助纯真绿蕊采纳,获得10
3秒前
磷酸瞳完成签到,获得积分10
3秒前
3秒前
ZYL发布了新的文献求助10
3秒前
顾矜应助zjujirenjie采纳,获得10
3秒前
早晚会疯完成签到 ,获得积分10
4秒前
4秒前
浮游应助倒霉蛋采纳,获得10
5秒前
111发布了新的文献求助10
5秒前
Ava应助等待凡英采纳,获得10
5秒前
5秒前
6秒前
6秒前
7秒前
JRY5678发布了新的文献求助10
8秒前
五颜六色的白完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
11秒前
苹果白凡发布了新的文献求助10
11秒前
趣乐多发布了新的文献求助10
12秒前
周舟完成签到 ,获得积分10
13秒前
好叭发布了新的文献求助10
14秒前
传奇3应助寂寞的松采纳,获得30
14秒前
zjujirenjie发布了新的文献求助10
14秒前
JJJJJJ完成签到,获得积分10
14秒前
牛俊生发布了新的文献求助20
16秒前
科研通AI6应助柳绿柳采纳,获得10
21秒前
21秒前
英姑应助斯文可仁采纳,获得10
22秒前
9090y完成签到,获得积分10
22秒前
科研通AI5应助longjiafang采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
李健的小迷弟应助好叭采纳,获得10
24秒前
善学以致用应助梁大力采纳,获得10
25秒前
上彐下火完成签到 ,获得积分10
25秒前
Lojong完成签到,获得积分10
26秒前
浮游应助yu采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942724
求助须知:如何正确求助?哪些是违规求助? 4208247
关于积分的说明 13081614
捐赠科研通 3987373
什么是DOI,文献DOI怎么找? 2183053
邀请新用户注册赠送积分活动 1198695
关于科研通互助平台的介绍 1111081