A Knowledge Distillation Compression Algorithm for Ship Speed and Energy Coordinated Optimal Scheduling Model based on Deep Reinforcement Learning

强化学习 蒸馏 计算机科学 调度(生产过程) 人工智能 算法 数学优化 数学 化学 有机化学
作者
Haipeng Xiao,Lijun Fu,Chengya Shang,Xianqiang Bao,Xinghua Xu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:: 1-1
标识
DOI:10.1109/tte.2024.3398991
摘要

Ship optimization scheduling, using deep reinforcement learning (DRL), has been extensively researched and implemented. Notably, the deep Q-learning algorithm (DQN) has achieved successful deployment within the optimization scheduling domain. However, there is currently almost no research on compressing and accelerating DQN-based All-Electric Ships (AES) energy scheduling models. This paper proposes a DQN knowledge distillation (DQN-KD) compression algorithm that incorporates the teacher replay memory pool (T-rpm) learning mechanism for compression problem of the DQN-based optimization scheduling model of AES. The DQN-KD algorithm can effectively transfer the knowledge of teacher agent to student agent, and further improve the training efficiency and performance of student agent using the T-rpm learning mechanism. The experimental results conduct on the AES system demonstrate that our proposed compression method is highly effective. Comparing with the teacher model, the Parameters, FLOP and Memory of the student model are significantly reduced by 87.7%, 92.61% and 88.3% respectively. Interestingly, despite these significant reductions, the student agent only experiences a marginal increase of 0.33% in economic consumption compared to the teacher agent. Furthermore, when the Parameters of the student agent are further reduced by 47.5%, and FLOPs by 50.4%, along with a 47.3% reduction in Memory, the resulting increase in economic consumption is only 0.59% compared to the teacher agent. Importantly, even with these notable reductions, the compressed agent maintained strong generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助俭朴士晋采纳,获得10
刚刚
zarahn完成签到,获得积分10
2秒前
情怀应助欣喜芙采纳,获得10
3秒前
早早发布了新的文献求助10
3秒前
文艺香菱发布了新的文献求助10
3秒前
Augustines完成签到,获得积分10
3秒前
自然的剑封完成签到,获得积分10
4秒前
4秒前
limi发布了新的文献求助10
5秒前
newsl完成签到,获得积分10
5秒前
小崽总完成签到,获得积分10
6秒前
俭朴士晋完成签到,获得积分10
6秒前
零零柒完成签到 ,获得积分10
6秒前
aki发布了新的文献求助10
6秒前
小马甲应助dd采纳,获得10
7秒前
7秒前
trier完成签到,获得积分10
7秒前
机智匪发布了新的文献求助10
8秒前
不会打架的熊完成签到,获得积分10
9秒前
heli发布了新的文献求助10
11秒前
謓言发布了新的文献求助10
11秒前
dawn发布了新的文献求助30
12秒前
13秒前
不再选择完成签到,获得积分10
14秒前
14秒前
14秒前
浮游应助cuicui采纳,获得10
14秒前
aki完成签到,获得积分10
15秒前
酷酷安珊完成签到,获得积分10
17秒前
19秒前
dd发布了新的文献求助10
19秒前
123完成签到 ,获得积分10
20秒前
La完成签到 ,获得积分10
20秒前
qimingran完成签到,获得积分10
21秒前
123完成签到,获得积分10
21秒前
21秒前
奋斗老鼠完成签到,获得积分20
22秒前
Felicity完成签到 ,获得积分10
22秒前
22秒前
cc关闭了cc文献求助
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350838
求助须知:如何正确求助?哪些是违规求助? 4484158
关于积分的说明 13958205
捐赠科研通 4383562
什么是DOI,文献DOI怎么找? 2408471
邀请新用户注册赠送积分活动 1401068
关于科研通互助平台的介绍 1374476