Construction of Primary and Secondary School Teachers’ Competency Model Based on Improved Machine Learning Algorithm

能力(人力资源) 学校教师 可靠性 数学教育 考试(生物学) 计算机科学 机器学习 数学 心理学 政治学 社会心理学 生物 古生物学 法学
作者
JunNa Wu
出处
期刊:Mathematical Problems in Engineering [Hindawi Limited]
卷期号:2022: 1-11
标识
DOI:10.1155/2022/6439092
摘要

In order to quantitatively evaluate the competence of primary and secondary school teachers, a competency model of primary and secondary school teachers based on an improved machine learning algorithm is proposed. The fitting parameter analysis model of primary and secondary school teachers’ competency is constructed, and the fitting benefit degree parameter of primary and secondary school teachers’ competency is extracted based on the analysis results of reliability index parameters. The improved machine learning algorithm is used to carry out quantitative analysis and characteristic element analysis in the process of primary and secondary school teachers’ competency evaluation and determine the competency elements of the model. According to the machine learning model, the competency elements are conceptualized and classified, and the theoretical parameter analysis model of online teaching competency of primary and secondary school teachers is constructed to realize the assessment and quantitative analysis of primary and secondary school teachers’ competency. Factor analysis and reliability tests were performed using the KMO test and Bartlett test. The empirical simulation analysis results show that the reliability and accuracy of the evaluation of primary and secondary school teachers’ competence by this method are good, and the level of credibility is high.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
神勇的雅香应助科研混子采纳,获得10
刚刚
TT发布了新的文献求助10
1秒前
李顺完成签到,获得积分20
2秒前
ayin发布了新的文献求助10
2秒前
wait发布了新的文献求助10
2秒前
我是站长才怪应助xg采纳,获得10
3秒前
童话艺术佳完成签到,获得积分10
3秒前
稀罕你完成签到,获得积分10
3秒前
junzilan发布了新的文献求助10
3秒前
anny.white完成签到,获得积分10
4秒前
科研通AI5应助平常的毛豆采纳,获得10
6秒前
SciGPT应助paul采纳,获得10
9秒前
11秒前
英姑应助书生采纳,获得10
12秒前
科研钓鱼佬完成签到,获得积分10
13秒前
15秒前
petrichor应助C_Cppp采纳,获得10
15秒前
nan完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
勤恳的雨文完成签到,获得积分10
16秒前
木森ab发布了新的文献求助10
17秒前
paul完成签到,获得积分10
17秒前
小鞋完成签到,获得积分10
18秒前
开心青旋发布了新的文献求助10
18秒前
fztnh发布了新的文献求助10
18秒前
无名花生完成签到 ,获得积分10
18秒前
20秒前
21秒前
21秒前
杜若完成签到,获得积分10
21秒前
21秒前
木森ab完成签到,获得积分20
23秒前
paul发布了新的文献求助10
24秒前
25秒前
MEME发布了新的文献求助10
28秒前
28秒前
情怀应助LSH970829采纳,获得10
28秒前
CHINA_C13发布了新的文献求助10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824