纳米流体
十二烷基硫酸钠
粘度
分散稳定性
热导率
材料科学
Zeta电位
肺表面活性物质
粒径
热力学
粒子(生态学)
相对密度
相对粘度
化学工程
纳米颗粒
色谱法
化学
复合材料
纳米技术
烧结
工程类
地质学
物理
海洋学
作者
Aycan Altun,Osman Nuri Şara,Semahat Doruk
标识
DOI:10.36306/konjes.1019424
摘要
Nanofluids have been considered as new potential heat transfer fluids, but there are controversial results about the stability and thermophysical properties of nanofluids in literature. In this experimental study, nanofluids at different aluminium oxide (Al2O3) volume fractions (0.3–1.1%) and sodium dodecyl sulfate (SDS) surfactant weight fractions (0.2–0.8%) were prepared by utilizing the two-step method. Stability of the obtained nanofluids was determined according to the sedimentation method, zeta potential and average particle size analysis. Density, viscosity and thermal conductivity of the nanofluids were measured experimentally from 298 K to 338 K. According to the results, the nanofluids prepared with 0.2% SDS began to collapse within a few minutes. However, it was observed that the stability of nanofluids prepared with 0.4% SDS, 0.6% SDS, and 0.8% SDS changed with the particle concentration. Besides, relative density values of nanofluids were found to be independent of temperature for each particle concentration. While relative viscosity of nanofluids increased with temperature, the highest relative thermal conductivity values of nanofluids with different weights of SDS were achieved at different temperatures. In general, relative thermal properties tend to increase with an increase in particle concentration. It has been observed that the stability and dispersion of nanofluids have a high effect on thermophysical properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI