亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detecting slow-moving landslides using InSAR phase-gradient stacking and deep-learning network

山崩 地质学 遥感 干涉合成孔径雷达 合成孔径雷达 相(物质) 地质灾害 计算机科学 大地测量学 地震学 物理 量子力学
作者
Fu Lv,Qi Zhang,Teng Wang,Weile Li,Qiang Xu,Daqing Ge
出处
期刊:Frontiers in Environmental Science 卷期号:10 被引量:26
标识
DOI:10.3389/fenvs.2022.963322
摘要

Landslides are a major geohazard that endangers human lives and properties. Recently, efforts have been made to use Synthetic Aperture Radar Interferometry (InSAR) for landslide monitoring. However, it is still difficult to effectively and automatically identify slow-moving landslides distributed over a large area due to phase unwrapping errors, decorrelation, troposphere turbulence and computational requirements. In this study, we develop a new approach combining phase-gradient stacking and a deep-learning network based on YOLOv3 to automatically detect slow-moving landslides from large-scale interferograms. Using Sentinel-1 SAR images acquired from 2014 to 2020, we developed a burst-based, phase-gradient stacking algorithm to sum up phase gradients in short-temporal-baseline interferograms along the azimuth and range directions. The stacked phase gradients clearly reveal the characteristics of localized surface deformation that is mainly caused by slow-moving landslides and avoids the errors due to phase unwrapping in partially decorrelated areas and atmospheric effects. Then, we trained the improved Attention-YOLOv3 network with stacked phase-gradient maps of manually labeled landslides to achieve quick and automatic detection. We applied our method in an ∼180,000 km 2 area of southwestern China and identified 3,366 slow-moving landslides. By comparing the results with optical imagery and previously published landslides in this region, the proposed method can achieve automatic detection over a large area precisely and efficiently. From the derived landslide density map, we determined that most landslides are distributed along the three large rivers and their branches. In addition to some counties with known high-density landslides, approximately 10 more counties with high landslide density were exposed, which should attract more attention to their risks for geohazards. This application demonstrates the potential value of our newly developed method for slow-moving landslide detection over a nation-wide area, which can be employed before applying more time-consuming time-series InSAR analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
小蘑菇应助凶狠的秀发采纳,获得10
9秒前
34秒前
1分钟前
1分钟前
生信小菜鸟完成签到 ,获得积分10
1分钟前
坚定山柳关注了科研通微信公众号
1分钟前
1分钟前
小熊发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小蘑菇应助坚定山柳采纳,获得50
2分钟前
puzhongjiMiQ发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
坚定山柳发布了新的文献求助50
3分钟前
Lucas应助lalafish采纳,获得30
3分钟前
3分钟前
djdh完成签到 ,获得积分10
3分钟前
3分钟前
puzhongjiMiQ发布了新的文献求助10
3分钟前
4分钟前
4分钟前
puzhongjiMiQ完成签到,获得积分10
4分钟前
lalafish发布了新的文献求助30
4分钟前
puzhongjiMiQ发布了新的文献求助10
4分钟前
lalafish完成签到,获得积分10
4分钟前
4分钟前
5分钟前
Nan发布了新的文献求助10
5分钟前
5分钟前
aldehyde应助科研通管家采纳,获得10
5分钟前
共享精神应助科研通管家采纳,获得10
5分钟前
在水一方应助凶狠的秀发采纳,获得10
5分钟前
5分钟前
6分钟前
完美世界应助凶狠的秀发采纳,获得10
6分钟前
乾坤侠客LW完成签到,获得积分10
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566620
求助须知:如何正确求助?哪些是违规求助? 3139348
关于积分的说明 9431622
捐赠科研通 2840212
什么是DOI,文献DOI怎么找? 1560981
邀请新用户注册赠送积分活动 730121
科研通“疑难数据库(出版商)”最低求助积分说明 717843