亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detecting slow-moving landslides using InSAR phase-gradient stacking and deep-learning network

山崩 地质学 遥感 干涉合成孔径雷达 合成孔径雷达 相(物质) 地质灾害 计算机科学 大地测量学 地震学 物理 量子力学
作者
Fu Lv,Qi Zhang,Teng Wang,Weile Li,Qiang Xu,Daqing Ge
出处
期刊:Frontiers in Environmental Science [Frontiers Media]
卷期号:10 被引量:26
标识
DOI:10.3389/fenvs.2022.963322
摘要

Landslides are a major geohazard that endangers human lives and properties. Recently, efforts have been made to use Synthetic Aperture Radar Interferometry (InSAR) for landslide monitoring. However, it is still difficult to effectively and automatically identify slow-moving landslides distributed over a large area due to phase unwrapping errors, decorrelation, troposphere turbulence and computational requirements. In this study, we develop a new approach combining phase-gradient stacking and a deep-learning network based on YOLOv3 to automatically detect slow-moving landslides from large-scale interferograms. Using Sentinel-1 SAR images acquired from 2014 to 2020, we developed a burst-based, phase-gradient stacking algorithm to sum up phase gradients in short-temporal-baseline interferograms along the azimuth and range directions. The stacked phase gradients clearly reveal the characteristics of localized surface deformation that is mainly caused by slow-moving landslides and avoids the errors due to phase unwrapping in partially decorrelated areas and atmospheric effects. Then, we trained the improved Attention-YOLOv3 network with stacked phase-gradient maps of manually labeled landslides to achieve quick and automatic detection. We applied our method in an ∼180,000 km 2 area of southwestern China and identified 3,366 slow-moving landslides. By comparing the results with optical imagery and previously published landslides in this region, the proposed method can achieve automatic detection over a large area precisely and efficiently. From the derived landslide density map, we determined that most landslides are distributed along the three large rivers and their branches. In addition to some counties with known high-density landslides, approximately 10 more counties with high landslide density were exposed, which should attract more attention to their risks for geohazards. This application demonstrates the potential value of our newly developed method for slow-moving landslide detection over a nation-wide area, which can be employed before applying more time-consuming time-series InSAR analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助sdjtxdy采纳,获得10
2秒前
16秒前
sdjtxdy发布了新的文献求助10
21秒前
脑洞疼应助sdjtxdy采纳,获得10
32秒前
cmq完成签到 ,获得积分10
32秒前
yoyo完成签到,获得积分10
38秒前
小年小少完成签到 ,获得积分10
44秒前
Orange应助喜滋滋采纳,获得10
1分钟前
Lss完成签到 ,获得积分20
1分钟前
Dreamchaser完成签到,获得积分10
1分钟前
酷波er应助Lss采纳,获得10
1分钟前
1分钟前
桐桐应助孙泉采纳,获得30
1分钟前
significant完成签到,获得积分10
1分钟前
1分钟前
喜滋滋发布了新的文献求助10
2分钟前
2分钟前
szx233完成签到 ,获得积分10
2分钟前
酷波er应助喜滋滋采纳,获得10
2分钟前
2分钟前
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
khan完成签到,获得积分10
2分钟前
khan发布了新的文献求助10
2分钟前
李娇完成签到 ,获得积分10
2分钟前
2分钟前
lhy完成签到,获得积分10
2分钟前
3分钟前
喜滋滋发布了新的文献求助10
3分钟前
喜滋滋完成签到,获得积分10
3分钟前
3分钟前
慕青应助paul采纳,获得10
3分钟前
3分钟前
love454106发布了新的文献求助10
4分钟前
love454106完成签到,获得积分10
4分钟前
4分钟前
酒渡完成签到,获得积分10
4分钟前
Gryphon完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910003
求助须知:如何正确求助?哪些是违规求助? 4186025
关于积分的说明 12998953
捐赠科研通 3953278
什么是DOI,文献DOI怎么找? 2167856
邀请新用户注册赠送积分活动 1186313
关于科研通互助平台的介绍 1093293