重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Detecting slow-moving landslides using InSAR phase-gradient stacking and deep-learning network

山崩 地质学 遥感 干涉合成孔径雷达 合成孔径雷达 相(物质) 地质灾害 计算机科学 大地测量学 地震学 物理 量子力学
作者
Fu Lv,Qi Zhang,Teng Wang,Weile Li,Qiang Xu,Daqing Ge
出处
期刊:Frontiers in Environmental Science [Frontiers Media]
卷期号:10 被引量:26
标识
DOI:10.3389/fenvs.2022.963322
摘要

Landslides are a major geohazard that endangers human lives and properties. Recently, efforts have been made to use Synthetic Aperture Radar Interferometry (InSAR) for landslide monitoring. However, it is still difficult to effectively and automatically identify slow-moving landslides distributed over a large area due to phase unwrapping errors, decorrelation, troposphere turbulence and computational requirements. In this study, we develop a new approach combining phase-gradient stacking and a deep-learning network based on YOLOv3 to automatically detect slow-moving landslides from large-scale interferograms. Using Sentinel-1 SAR images acquired from 2014 to 2020, we developed a burst-based, phase-gradient stacking algorithm to sum up phase gradients in short-temporal-baseline interferograms along the azimuth and range directions. The stacked phase gradients clearly reveal the characteristics of localized surface deformation that is mainly caused by slow-moving landslides and avoids the errors due to phase unwrapping in partially decorrelated areas and atmospheric effects. Then, we trained the improved Attention-YOLOv3 network with stacked phase-gradient maps of manually labeled landslides to achieve quick and automatic detection. We applied our method in an ∼180,000 km 2 area of southwestern China and identified 3,366 slow-moving landslides. By comparing the results with optical imagery and previously published landslides in this region, the proposed method can achieve automatic detection over a large area precisely and efficiently. From the derived landslide density map, we determined that most landslides are distributed along the three large rivers and their branches. In addition to some counties with known high-density landslides, approximately 10 more counties with high landslide density were exposed, which should attract more attention to their risks for geohazards. This application demonstrates the potential value of our newly developed method for slow-moving landslide detection over a nation-wide area, which can be employed before applying more time-consuming time-series InSAR analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虞头星星完成签到 ,获得积分10
刚刚
sy发布了新的文献求助10
刚刚
刚刚
momo发布了新的文献求助10
1秒前
snowwww完成签到,获得积分10
1秒前
充电宝应助缓慢怜翠采纳,获得10
1秒前
1秒前
hcmsaobang2001完成签到,获得积分10
1秒前
1秒前
1秒前
无限幻枫发布了新的文献求助10
2秒前
Akim应助zhuchenglu采纳,获得10
2秒前
镘淳发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
wanci应助Ren采纳,获得10
3秒前
3秒前
香蕉梨愁发布了新的文献求助10
3秒前
一支得卦完成签到,获得积分10
3秒前
May发布了新的文献求助10
3秒前
keyanqianjin发布了新的文献求助10
4秒前
溯溯发布了新的文献求助10
4秒前
4秒前
4秒前
si完成签到,获得积分10
4秒前
5秒前
5秒前
传奇3应助我是聪聪呦采纳,获得10
6秒前
合适的秋白完成签到,获得积分10
6秒前
one发布了新的文献求助10
6秒前
believe发布了新的文献求助10
7秒前
Owen应助llm的同桌采纳,获得10
7秒前
xyzlancet发布了新的文献求助10
7秒前
ents发布了新的文献求助10
7秒前
7秒前
ljq发布了新的文献求助10
7秒前
小青椒应助一支得卦采纳,获得30
8秒前
无情书萱发布了新的文献求助30
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605