亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detecting slow-moving landslides using InSAR phase-gradient stacking and deep-learning network

山崩 地质学 遥感 干涉合成孔径雷达 合成孔径雷达 相(物质) 地质灾害 计算机科学 大地测量学 地震学 物理 量子力学
作者
Fu Lv,Qi Zhang,Teng Wang,Weile Li,Qiang Xu,Daqing Ge
出处
期刊:Frontiers in Environmental Science [Frontiers Media]
卷期号:10 被引量:26
标识
DOI:10.3389/fenvs.2022.963322
摘要

Landslides are a major geohazard that endangers human lives and properties. Recently, efforts have been made to use Synthetic Aperture Radar Interferometry (InSAR) for landslide monitoring. However, it is still difficult to effectively and automatically identify slow-moving landslides distributed over a large area due to phase unwrapping errors, decorrelation, troposphere turbulence and computational requirements. In this study, we develop a new approach combining phase-gradient stacking and a deep-learning network based on YOLOv3 to automatically detect slow-moving landslides from large-scale interferograms. Using Sentinel-1 SAR images acquired from 2014 to 2020, we developed a burst-based, phase-gradient stacking algorithm to sum up phase gradients in short-temporal-baseline interferograms along the azimuth and range directions. The stacked phase gradients clearly reveal the characteristics of localized surface deformation that is mainly caused by slow-moving landslides and avoids the errors due to phase unwrapping in partially decorrelated areas and atmospheric effects. Then, we trained the improved Attention-YOLOv3 network with stacked phase-gradient maps of manually labeled landslides to achieve quick and automatic detection. We applied our method in an ∼180,000 km 2 area of southwestern China and identified 3,366 slow-moving landslides. By comparing the results with optical imagery and previously published landslides in this region, the proposed method can achieve automatic detection over a large area precisely and efficiently. From the derived landslide density map, we determined that most landslides are distributed along the three large rivers and their branches. In addition to some counties with known high-density landslides, approximately 10 more counties with high landslide density were exposed, which should attract more attention to their risks for geohazards. This application demonstrates the potential value of our newly developed method for slow-moving landslide detection over a nation-wide area, which can be employed before applying more time-consuming time-series InSAR analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贺俊龙发布了新的文献求助10
2秒前
zsmj23完成签到 ,获得积分0
13秒前
Hello应助贺俊龙采纳,获得10
13秒前
坦率的乐蕊完成签到 ,获得积分10
40秒前
思源应助张艺雯采纳,获得10
1分钟前
大雪完成签到 ,获得积分10
1分钟前
1分钟前
张艺雯发布了新的文献求助10
1分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
2分钟前
今后应助Benhnhk21采纳,获得30
2分钟前
小手姑娘发布了新的文献求助10
2分钟前
2分钟前
Benhnhk21发布了新的文献求助30
2分钟前
小手姑娘完成签到,获得积分10
2分钟前
2分钟前
CC发布了新的文献求助10
2分钟前
make217完成签到 ,获得积分10
3分钟前
3分钟前
qinyi完成签到,获得积分10
4分钟前
甜瓜123完成签到,获得积分20
4分钟前
桐桐应助cometx采纳,获得10
5分钟前
朴素海亦完成签到 ,获得积分10
5分钟前
5分钟前
cometx发布了新的文献求助10
5分钟前
可爱的函函应助徐归尘采纳,获得10
5分钟前
小马甲应助Benhnhk21采纳,获得10
5分钟前
甜瓜123发布了新的文献求助30
5分钟前
6分钟前
6分钟前
赘婿应助cometx采纳,获得10
6分钟前
Benhnhk21发布了新的文献求助10
6分钟前
CC发布了新的文献求助10
6分钟前
爆米花应助科研捣蛋鬼采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
ding应助幸福的靳采纳,获得10
6分钟前
独特觅翠发布了新的文献求助10
6分钟前
Omni完成签到,获得积分10
7分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Fermented Coffee Market 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5233146
求助须知:如何正确求助?哪些是违规求助? 4402224
关于积分的说明 13699781
捐赠科研通 4268842
什么是DOI,文献DOI怎么找? 2342806
邀请新用户注册赠送积分活动 1339827
关于科研通互助平台的介绍 1296698