Detecting slow-moving landslides using InSAR phase-gradient stacking and deep-learning network

山崩 地质学 遥感 干涉合成孔径雷达 合成孔径雷达 相(物质) 地质灾害 计算机科学 大地测量学 地震学 物理 量子力学
作者
Fu Lv,Qi Zhang,Teng Wang,Weile Li,Qiang Xu,Daqing Ge
出处
期刊:Frontiers in Environmental Science [Frontiers Media]
卷期号:10 被引量:26
标识
DOI:10.3389/fenvs.2022.963322
摘要

Landslides are a major geohazard that endangers human lives and properties. Recently, efforts have been made to use Synthetic Aperture Radar Interferometry (InSAR) for landslide monitoring. However, it is still difficult to effectively and automatically identify slow-moving landslides distributed over a large area due to phase unwrapping errors, decorrelation, troposphere turbulence and computational requirements. In this study, we develop a new approach combining phase-gradient stacking and a deep-learning network based on YOLOv3 to automatically detect slow-moving landslides from large-scale interferograms. Using Sentinel-1 SAR images acquired from 2014 to 2020, we developed a burst-based, phase-gradient stacking algorithm to sum up phase gradients in short-temporal-baseline interferograms along the azimuth and range directions. The stacked phase gradients clearly reveal the characteristics of localized surface deformation that is mainly caused by slow-moving landslides and avoids the errors due to phase unwrapping in partially decorrelated areas and atmospheric effects. Then, we trained the improved Attention-YOLOv3 network with stacked phase-gradient maps of manually labeled landslides to achieve quick and automatic detection. We applied our method in an ∼180,000 km 2 area of southwestern China and identified 3,366 slow-moving landslides. By comparing the results with optical imagery and previously published landslides in this region, the proposed method can achieve automatic detection over a large area precisely and efficiently. From the derived landslide density map, we determined that most landslides are distributed along the three large rivers and their branches. In addition to some counties with known high-density landslides, approximately 10 more counties with high landslide density were exposed, which should attract more attention to their risks for geohazards. This application demonstrates the potential value of our newly developed method for slow-moving landslide detection over a nation-wide area, which can be employed before applying more time-consuming time-series InSAR analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助zjz采纳,获得30
刚刚
刚刚
小吴同学发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
2秒前
shaocat完成签到 ,获得积分10
2秒前
风中的眼神完成签到,获得积分10
2秒前
CAOHOU应助奋斗水香采纳,获得10
3秒前
俊逸梦蕊完成签到,获得积分10
3秒前
4秒前
典雅牛青关注了科研通微信公众号
4秒前
Xinxxx发布了新的文献求助10
4秒前
illusion完成签到,获得积分10
5秒前
wanci应助王冉冉采纳,获得30
6秒前
树小夏发布了新的文献求助10
7秒前
小吴同学完成签到,获得积分10
7秒前
赘婿应助kk_yang采纳,获得10
8秒前
成就伟祺关注了科研通微信公众号
9秒前
能干的语芙完成签到 ,获得积分10
9秒前
无欲无求傻傻完成签到,获得积分10
9秒前
9秒前
9秒前
尊敬寒松完成签到 ,获得积分10
9秒前
糊涂的麦片完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
wanci应助wangdafa采纳,获得10
11秒前
竹子co完成签到,获得积分10
11秒前
steventj完成签到,获得积分10
11秒前
yz完成签到 ,获得积分10
12秒前
朴实山兰完成签到,获得积分10
13秒前
tkkdy发布了新的文献求助10
13秒前
蓁蓁发布了新的文献求助10
13秒前
醉熏的鑫发布了新的文献求助10
14秒前
独家双层汉堡完成签到,获得积分10
14秒前
Li完成签到,获得积分10
15秒前
xcx发布了新的文献求助10
15秒前
江小小发布了新的文献求助10
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds第二卷 1200
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038657
求助须知:如何正确求助?哪些是违规求助? 3576306
关于积分的说明 11375198
捐赠科研通 3306108
什么是DOI,文献DOI怎么找? 1819379
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066