Synthesis and Theoretical Modeling of Suitable Co-precipitation Conditions for Producing NMC111 Cathode Material for Lithium-Ion Batteries

金属氢氧化物 锂(药物) 电化学 离子 阴极 电池(电) 降水 产量(工程) 扩散 自来水 氢氧化锂 氢氧化物 粒径 材料科学 锂离子电池 氧化钴 硝酸锂 无机化学 化学工程 化学 电极 离子交换 物理 冶金 物理化学 气象学 有机化学 离子键合 热力学 工程类 医学 内分泌学 环境工程 功率(物理)
作者
Jethrine H. Mugumya,Michael L. Rasche,Robert F. Rafferty,Arjun Patel,Sourav Mallick,Mingyao Mou,Julian A. Bobb,Ram B. Gupta,Mo Jiang
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:36 (19): 12261-12270 被引量:12
标识
DOI:10.1021/acs.energyfuels.2c01805
摘要

Lithium nickel manganese cobalt oxide (NMC111) is considered to be one of the most promising cathode materials for commercial lithium-ion battery (LIB) fabrication. Among the various synthesis procedures of NMC111, hydroxide co-precipitation followed by lithiation is the most cost-effective and scalable method. Physical and chemical properties of the co-precipitation product such as yield, particle size, morphology, and tap density, depend upon the various reaction parameters, which include pH, chelating agents, metal salt concentrations, and stirring speed. As a consequence, detailed theoretical and experimental modeling is critically required to not only understand the interdependence between the particle properties and reaction conditions but also optimize these parameters. In this study, theoretical modeling was performed to analyze the role of various NH4OH concentrations with varying pH on the yield of the NMC(OH)2 product. From the experimental findings, it was observed that the product obtained at a pH of 11.5 and NH4OH concentration of 0.02 M possessed the highest tap density. Three of the hydroxide precursors with different tap density values were chosen to lithiate and were applied for coin cell fabrication. The NMC(OH)2 precursor with the highest tap density had the highest specific capacity of 155 mAh g–1 at 0.1 C and retained up to 78.6 mAh g–1 at 5 C. The variation of the Li+ diffusion coefficient for the three selected materials was also studied using electrochemical impedance analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阔达小土豆完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
yin完成签到 ,获得积分10
3秒前
7秒前
SciGPT应助Kenneyhahaha采纳,获得10
8秒前
单薄丹寒发布了新的文献求助10
10秒前
10秒前
狸花小喵完成签到,获得积分10
11秒前
材料打工人完成签到,获得积分10
12秒前
14秒前
dropwater完成签到,获得积分10
14秒前
14秒前
15秒前
奇Qi发布了新的文献求助10
15秒前
曹志毅完成签到 ,获得积分10
17秒前
科研通AI2S应助一二三四五采纳,获得10
17秒前
笑点低白秋完成签到,获得积分10
18秒前
quandian完成签到,获得积分10
18秒前
LShi发布了新的文献求助10
19秒前
上进生发布了新的文献求助10
19秒前
19秒前
maxSpr完成签到 ,获得积分10
19秒前
AVA发布了新的文献求助10
21秒前
22秒前
香蕉觅云应助狸花小喵采纳,获得10
24秒前
24秒前
24秒前
24秒前
他化自在天完成签到,获得积分10
25秒前
Wanglh发布了新的文献求助10
26秒前
27秒前
酷波er应助AVA采纳,获得10
29秒前
简Moild发布了新的文献求助30
29秒前
30秒前
QIANLI完成签到,获得积分10
30秒前
传奇3应助cctoday采纳,获得10
30秒前
香草山完成签到 ,获得积分10
31秒前
tsw发布了新的文献求助10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145219
求助须知:如何正确求助?哪些是违规求助? 2796603
关于积分的说明 7820639
捐赠科研通 2452983
什么是DOI,文献DOI怎么找? 1305309
科研通“疑难数据库(出版商)”最低求助积分说明 627466
版权声明 601464