Selective Prototype Network for Few-Shot Metal Surface Defect Segmentation

分割 人工智能 计算机科学 像素 计算机视觉 图像分割 特征(语言学) 模式识别(心理学) 背景(考古学) 古生物学 哲学 语言学 生物
作者
Ruiyun Yu,Bingyang Guo,Kang Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-10 被引量:15
标识
DOI:10.1109/tim.2022.3196447
摘要

Metal Surface defects segmentation is a critical task to make pixel-level predictions about defects in the industrial production process, which has great significance in improving product quality. Existing segmentation algorithms use numerous labeled defective images for training and can not be generalized to different metal surfaces. Additionally, the metal surface has different materials and the defect samples are insufficient. That means collecting defective images and annotates pixel labels takes more time. In order to solve the above problems, this paper proposed a novel selective prototype network (SPNet) with matrix decomposition attention mechanism for few-shot metal surface defect segmentation, which aims to learn a model that can be generalized to novel surface classes with only a few labeled defect samples. Using a selective prototype acquired from the support image to learn query image, SPNet efficiently utilizes the information of the same metal surface defects and meanwhile offers sufficient representation for different metal surface defects. With this, SPNet fully utilizes correlation knowledge from the known defects and provides better generalization on unknown defects. Moreover, SPNet introduces a feature attention mechanism based on matrix decomposition. The novel attention method factorizes the complicated feature representation to acquire more accurate global context information. In addition, to improve the segmentation performance, a conditional boundary refinement module is proposed. Experimental results on the Defects dataset show that SPNet achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ying发布了新的文献求助10
3秒前
ddup完成签到,获得积分10
4秒前
5秒前
EricXu发布了新的文献求助10
6秒前
7秒前
cz完成签到,获得积分10
7秒前
yuliuism完成签到,获得积分10
8秒前
Kiki发布了新的文献求助10
8秒前
9秒前
cz发布了新的文献求助10
11秒前
幸福的杨小夕完成签到,获得积分10
11秒前
11秒前
传奇3应助EricXu采纳,获得10
12秒前
HAHA完成签到,获得积分10
13秒前
qian完成签到,获得积分20
15秒前
小蝶完成签到 ,获得积分10
16秒前
meng发布了新的文献求助10
17秒前
123木头人完成签到,获得积分20
18秒前
虚幻的靖柔完成签到,获得积分20
19秒前
可可西里完成签到 ,获得积分10
19秒前
脑洞疼应助越啊采纳,获得10
19秒前
21秒前
钟小凯完成签到 ,获得积分10
21秒前
22秒前
qian发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
哈哈小妖怪完成签到,获得积分10
24秒前
Reese完成签到 ,获得积分10
25秒前
鹿茸完成签到,获得积分10
25秒前
科研通AI5应助哈哈哈采纳,获得30
25秒前
AKIN发布了新的文献求助30
26秒前
机智灵薇发布了新的文献求助10
27秒前
乐乐应助123木头人采纳,获得10
28秒前
蔺阁发布了新的文献求助10
28秒前
Sherlock完成签到,获得积分10
29秒前
31秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5120563
求助须知:如何正确求助?哪些是违规求助? 4325901
关于积分的说明 13478119
捐赠科研通 4159552
什么是DOI,文献DOI怎么找? 2279551
邀请新用户注册赠送积分活动 1281381
关于科研通互助平台的介绍 1220210