Selective Prototype Network for Few-Shot Metal Surface Defect Segmentation

分割 人工智能 计算机科学 像素 计算机视觉 图像分割 特征(语言学) 模式识别(心理学) 背景(考古学) 古生物学 哲学 语言学 生物
作者
Ruiyun Yu,Bingyang Guo,Kang Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-10 被引量:15
标识
DOI:10.1109/tim.2022.3196447
摘要

Metal Surface defects segmentation is a critical task to make pixel-level predictions about defects in the industrial production process, which has great significance in improving product quality. Existing segmentation algorithms use numerous labeled defective images for training and can not be generalized to different metal surfaces. Additionally, the metal surface has different materials and the defect samples are insufficient. That means collecting defective images and annotates pixel labels takes more time. In order to solve the above problems, this paper proposed a novel selective prototype network (SPNet) with matrix decomposition attention mechanism for few-shot metal surface defect segmentation, which aims to learn a model that can be generalized to novel surface classes with only a few labeled defect samples. Using a selective prototype acquired from the support image to learn query image, SPNet efficiently utilizes the information of the same metal surface defects and meanwhile offers sufficient representation for different metal surface defects. With this, SPNet fully utilizes correlation knowledge from the known defects and provides better generalization on unknown defects. Moreover, SPNet introduces a feature attention mechanism based on matrix decomposition. The novel attention method factorizes the complicated feature representation to acquire more accurate global context information. In addition, to improve the segmentation performance, a conditional boundary refinement module is proposed. Experimental results on the Defects dataset show that SPNet achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
二宝发布了新的文献求助10
刚刚
刚刚
2秒前
Yue_David完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
duila完成签到,获得积分10
2秒前
练习者发布了新的文献求助10
3秒前
3秒前
GG完成签到,获得积分10
3秒前
xu1227应助三二一采纳,获得20
4秒前
shawn_89发布了新的文献求助30
4秒前
5秒前
李健应助研友_8WMgOn采纳,获得10
5秒前
JamesPei应助二宝采纳,获得10
5秒前
enzyme完成签到,获得积分20
5秒前
风中乘风完成签到,获得积分10
6秒前
6秒前
6秒前
Mannose发布了新的文献求助10
7秒前
LLL完成签到,获得积分10
8秒前
洁净方盒发布了新的文献求助10
8秒前
情怀应助gh142132采纳,获得30
8秒前
8秒前
武穆杰完成签到,获得积分10
8秒前
北欧海盗发布了新的文献求助10
9秒前
plmnko完成签到,获得积分10
9秒前
卧虎完成签到,获得积分10
10秒前
李金荣完成签到,获得积分10
10秒前
10秒前
科研通AI2S应助科研小男孩采纳,获得10
11秒前
BrandNew。发布了新的文献求助10
11秒前
李爱国应助killkitty采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
科研狗发布了新的文献求助10
14秒前
武穆杰发布了新的文献求助20
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409589
求助须知:如何正确求助?哪些是违规求助? 4527184
关于积分的说明 14109684
捐赠科研通 4441691
什么是DOI,文献DOI怎么找? 2437581
邀请新用户注册赠送积分活动 1429547
关于科研通互助平台的介绍 1407703