Selective Prototype Network for Few-Shot Metal Surface Defect Segmentation

分割 人工智能 计算机科学 像素 计算机视觉 图像分割 特征(语言学) 模式识别(心理学) 背景(考古学) 古生物学 哲学 语言学 生物
作者
Ruiyun Yu,Bingyang Guo,Kang Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-10 被引量:15
标识
DOI:10.1109/tim.2022.3196447
摘要

Metal Surface defects segmentation is a critical task to make pixel-level predictions about defects in the industrial production process, which has great significance in improving product quality. Existing segmentation algorithms use numerous labeled defective images for training and can not be generalized to different metal surfaces. Additionally, the metal surface has different materials and the defect samples are insufficient. That means collecting defective images and annotates pixel labels takes more time. In order to solve the above problems, this paper proposed a novel selective prototype network (SPNet) with matrix decomposition attention mechanism for few-shot metal surface defect segmentation, which aims to learn a model that can be generalized to novel surface classes with only a few labeled defect samples. Using a selective prototype acquired from the support image to learn query image, SPNet efficiently utilizes the information of the same metal surface defects and meanwhile offers sufficient representation for different metal surface defects. With this, SPNet fully utilizes correlation knowledge from the known defects and provides better generalization on unknown defects. Moreover, SPNet introduces a feature attention mechanism based on matrix decomposition. The novel attention method factorizes the complicated feature representation to acquire more accurate global context information. In addition, to improve the segmentation performance, a conditional boundary refinement module is proposed. Experimental results on the Defects dataset show that SPNet achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨佳酿发布了新的文献求助10
2秒前
张颖完成签到,获得积分10
2秒前
桐桐应助吱吱熊sama采纳,获得10
2秒前
3秒前
何y完成签到 ,获得积分10
3秒前
3秒前
英俊的铭应助爱丽丝敏采纳,获得10
4秒前
5秒前
呆萌魏完成签到 ,获得积分10
6秒前
卿落完成签到,获得积分10
6秒前
闫123完成签到,获得积分10
7秒前
cy发布了新的文献求助40
8秒前
小柒多多发布了新的文献求助10
9秒前
9秒前
mzmz给mzmz的求助进行了留言
10秒前
zzuli_liu完成签到,获得积分10
10秒前
烟花应助Luna采纳,获得10
11秒前
义气衬衫完成签到,获得积分10
12秒前
鳗鱼不尤完成签到,获得积分10
12秒前
研友_VZG7GZ应助浮浮世世采纳,获得10
12秒前
cai完成签到,获得积分10
13秒前
美好斓发布了新的文献求助10
13秒前
啦啦啦完成签到,获得积分10
15秒前
星辰大海应助lian采纳,获得10
15秒前
Lio发布了新的文献求助10
16秒前
李爱国应助黄逸然采纳,获得10
17秒前
18秒前
YYY完成签到 ,获得积分10
20秒前
wanci应助波安班采纳,获得10
20秒前
21秒前
21秒前
21秒前
kk完成签到,获得积分10
22秒前
冯冯完成签到 ,获得积分10
22秒前
樊焕焕发布了新的文献求助10
22秒前
zoe完成签到 ,获得积分10
22秒前
23秒前
恐怖稽器人完成签到,获得积分10
23秒前
25秒前
Chase完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295400
求助须知:如何正确求助?哪些是违规求助? 4444944
关于积分的说明 13834942
捐赠科研通 4329343
什么是DOI,文献DOI怎么找? 2376614
邀请新用户注册赠送积分活动 1371888
关于科研通互助平台的介绍 1337169