Selective Prototype Network for Few-Shot Metal Surface Defect Segmentation

分割 人工智能 计算机科学 像素 计算机视觉 图像分割 特征(语言学) 模式识别(心理学) 背景(考古学) 古生物学 哲学 语言学 生物
作者
Ruiyun Yu,Bingyang Guo,Kang Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-10 被引量:15
标识
DOI:10.1109/tim.2022.3196447
摘要

Metal Surface defects segmentation is a critical task to make pixel-level predictions about defects in the industrial production process, which has great significance in improving product quality. Existing segmentation algorithms use numerous labeled defective images for training and can not be generalized to different metal surfaces. Additionally, the metal surface has different materials and the defect samples are insufficient. That means collecting defective images and annotates pixel labels takes more time. In order to solve the above problems, this paper proposed a novel selective prototype network (SPNet) with matrix decomposition attention mechanism for few-shot metal surface defect segmentation, which aims to learn a model that can be generalized to novel surface classes with only a few labeled defect samples. Using a selective prototype acquired from the support image to learn query image, SPNet efficiently utilizes the information of the same metal surface defects and meanwhile offers sufficient representation for different metal surface defects. With this, SPNet fully utilizes correlation knowledge from the known defects and provides better generalization on unknown defects. Moreover, SPNet introduces a feature attention mechanism based on matrix decomposition. The novel attention method factorizes the complicated feature representation to acquire more accurate global context information. In addition, to improve the segmentation performance, a conditional boundary refinement module is proposed. Experimental results on the Defects dataset show that SPNet achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄小兔子完成签到,获得积分10
刚刚
受伤雁荷发布了新的文献求助10
刚刚
共享精神应助1132458610采纳,获得10
1秒前
luochen完成签到,获得积分10
2秒前
3秒前
慕青应助sbrcpyf采纳,获得10
3秒前
5114完成签到,获得积分10
3秒前
5秒前
forever发布了新的文献求助10
6秒前
冷静如柏完成签到,获得积分10
7秒前
7秒前
CodeCraft应助yg28采纳,获得10
7秒前
qiuqiu完成签到,获得积分10
7秒前
lei.qin完成签到 ,获得积分10
7秒前
8秒前
星辰大海应助清脆的老虎采纳,获得10
8秒前
9秒前
星辰大海应助受伤雁荷采纳,获得10
9秒前
ivy完成签到,获得积分10
9秒前
10秒前
Akim应助black采纳,获得20
10秒前
10秒前
大模型应助谦让的凝阳采纳,获得10
11秒前
大模型应助yulian采纳,获得10
11秒前
12秒前
温暖天与应助科研小白采纳,获得10
12秒前
JJJJJJJJJ完成签到,获得积分10
13秒前
凛之宵星发布了新的文献求助10
13秒前
13秒前
账户已注销完成签到,获得积分0
13秒前
13秒前
14秒前
14秒前
14秒前
bbll完成签到,获得积分10
14秒前
sbrcpyf发布了新的文献求助10
14秒前
14秒前
guantlv发布了新的文献求助10
15秒前
15秒前
司空丹秋完成签到,获得积分10
15秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262073
求助须知:如何正确求助?哪些是违规求助? 2902832
关于积分的说明 8322686
捐赠科研通 2572845
什么是DOI,文献DOI怎么找? 1397879
科研通“疑难数据库(出版商)”最低求助积分说明 653925
邀请新用户注册赠送积分活动 632489