亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Selective Prototype Network for Few-Shot Metal Surface Defect Segmentation

分割 人工智能 计算机科学 像素 计算机视觉 图像分割 特征(语言学) 模式识别(心理学) 背景(考古学) 古生物学 哲学 语言学 生物
作者
Ruiyun Yu,Bingyang Guo,Kang Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-10 被引量:15
标识
DOI:10.1109/tim.2022.3196447
摘要

Metal Surface defects segmentation is a critical task to make pixel-level predictions about defects in the industrial production process, which has great significance in improving product quality. Existing segmentation algorithms use numerous labeled defective images for training and can not be generalized to different metal surfaces. Additionally, the metal surface has different materials and the defect samples are insufficient. That means collecting defective images and annotates pixel labels takes more time. In order to solve the above problems, this paper proposed a novel selective prototype network (SPNet) with matrix decomposition attention mechanism for few-shot metal surface defect segmentation, which aims to learn a model that can be generalized to novel surface classes with only a few labeled defect samples. Using a selective prototype acquired from the support image to learn query image, SPNet efficiently utilizes the information of the same metal surface defects and meanwhile offers sufficient representation for different metal surface defects. With this, SPNet fully utilizes correlation knowledge from the known defects and provides better generalization on unknown defects. Moreover, SPNet introduces a feature attention mechanism based on matrix decomposition. The novel attention method factorizes the complicated feature representation to acquire more accurate global context information. In addition, to improve the segmentation performance, a conditional boundary refinement module is proposed. Experimental results on the Defects dataset show that SPNet achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tenta发布了新的文献求助200
7秒前
赘婿应助feifeiaym采纳,获得20
14秒前
乐正亦寒完成签到 ,获得积分10
40秒前
无情迎蕾完成签到,获得积分10
1分钟前
1分钟前
结实初柳完成签到,获得积分10
1分钟前
tenta完成签到,获得积分10
1分钟前
feifeiaym发布了新的文献求助20
1分钟前
feifeiaym完成签到 ,获得积分10
2分钟前
tutu完成签到,获得积分10
2分钟前
丘比特应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
李金文应助小坏蛋蛋蛋蛋采纳,获得10
3分钟前
英俊的铭应助jane123采纳,获得10
3分钟前
Hillson完成签到,获得积分10
3分钟前
Mark_He发布了新的文献求助10
3分钟前
5分钟前
nolan完成签到 ,获得积分10
5分钟前
科目三应助蒙豆儿采纳,获得10
6分钟前
6分钟前
6分钟前
蒙豆儿发布了新的文献求助10
6分钟前
littleboykk完成签到 ,获得积分10
6分钟前
华仔应助科研通管家采纳,获得10
6分钟前
CipherSage应助科研通管家采纳,获得10
6分钟前
6分钟前
华仔应助蒙豆儿采纳,获得10
6分钟前
7分钟前
蒙豆儿发布了新的文献求助10
7分钟前
狂野的雨灵完成签到,获得积分20
7分钟前
FashionBoy应助蒙豆儿采纳,获得10
8分钟前
8分钟前
科研通AI5应助马良采纳,获得10
8分钟前
8分钟前
8分钟前
蒙豆儿发布了新的文献求助10
8分钟前
冬去春来完成签到 ,获得积分10
8分钟前
8分钟前
马良发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582230
求助须知:如何正确求助?哪些是违规求助? 4000003
关于积分的说明 12381980
捐赠科研通 3674886
什么是DOI,文献DOI怎么找? 2025434
邀请新用户注册赠送积分活动 1059192
科研通“疑难数据库(出版商)”最低求助积分说明 945820