Selective Prototype Network for Few-Shot Metal Surface Defect Segmentation

分割 人工智能 计算机科学 像素 计算机视觉 图像分割 特征(语言学) 模式识别(心理学) 背景(考古学) 古生物学 哲学 语言学 生物
作者
Ruiyun Yu,Bingyang Guo,Kang Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-10 被引量:15
标识
DOI:10.1109/tim.2022.3196447
摘要

Metal Surface defects segmentation is a critical task to make pixel-level predictions about defects in the industrial production process, which has great significance in improving product quality. Existing segmentation algorithms use numerous labeled defective images for training and can not be generalized to different metal surfaces. Additionally, the metal surface has different materials and the defect samples are insufficient. That means collecting defective images and annotates pixel labels takes more time. In order to solve the above problems, this paper proposed a novel selective prototype network (SPNet) with matrix decomposition attention mechanism for few-shot metal surface defect segmentation, which aims to learn a model that can be generalized to novel surface classes with only a few labeled defect samples. Using a selective prototype acquired from the support image to learn query image, SPNet efficiently utilizes the information of the same metal surface defects and meanwhile offers sufficient representation for different metal surface defects. With this, SPNet fully utilizes correlation knowledge from the known defects and provides better generalization on unknown defects. Moreover, SPNet introduces a feature attention mechanism based on matrix decomposition. The novel attention method factorizes the complicated feature representation to acquire more accurate global context information. In addition, to improve the segmentation performance, a conditional boundary refinement module is proposed. Experimental results on the Defects dataset show that SPNet achieves state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Erick爱喝粥完成签到,获得积分10
刚刚
h_hellow完成签到,获得积分10
刚刚
毅梦完成签到,获得积分10
刚刚
修凯尔发布了新的文献求助10
1秒前
Liury发布了新的文献求助10
1秒前
1秒前
大成子发布了新的文献求助10
1秒前
1秒前
2秒前
打打应助贪玩的怜南采纳,获得10
2秒前
上帝粒子发布了新的文献求助20
2秒前
sleeeeeep发布了新的文献求助10
3秒前
3秒前
3秒前
天天快乐应助nana采纳,获得10
3秒前
轻吟发布了新的文献求助10
3秒前
甜橙汁完成签到,获得积分10
4秒前
linan完成签到,获得积分10
4秒前
moumou完成签到,获得积分10
4秒前
88888888888发布了新的文献求助10
4秒前
nini驳回了所所应助
4秒前
4秒前
4秒前
fan完成签到 ,获得积分10
5秒前
小坚果发布了新的文献求助10
5秒前
义气绿柳完成签到,获得积分10
5秒前
哭泣代容发布了新的文献求助10
5秒前
5秒前
Owen应助皮半鬼采纳,获得10
6秒前
6秒前
xiaoloong发布了新的文献求助10
6秒前
666发布了新的文献求助10
6秒前
Autumn完成签到,获得积分10
6秒前
7秒前
7秒前
北北斤完成签到 ,获得积分10
7秒前
打老虎完成签到,获得积分10
8秒前
陈同学发布了新的文献求助10
8秒前
0206完成签到,获得积分10
8秒前
zw完成签到,获得积分10
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009462
求助须知:如何正确求助?哪些是违规求助? 3549388
关于积分的说明 11301996
捐赠科研通 3283894
什么是DOI,文献DOI怎么找? 1810448
邀请新用户注册赠送积分活动 886287
科研通“疑难数据库(出版商)”最低求助积分说明 811316