YOLO-F: YOLO for Flame Detection

跳跃式监视 卷积神经网络 人工智能 最小边界框 计算机科学 特征(语言学) 度量(数据仓库) 目标检测 骨干网 相似性(几何) 模式识别(心理学) 图像(数学) 数据挖掘 计算机网络 哲学 语言学
作者
Kun Xu,Yuan Xu,Yuanxin Xing,Zhanwen Liu
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:37 (01) 被引量:6
标识
DOI:10.1142/s0218001422500434
摘要

Flame detection is of great significance in a fire prevention system. YOLOv4 has poor real-time performance on flame detection caused by the complex structure and high parameter size. To address this problem, a novel flame detection framework, YOLO for flame (YOLO-F), is proposed in this paper. The backbone of YOLOv4 is simplified from the original 53 convolutional layers to 34 convolutional layers to reduce the number of parameters by simplifying the structure of the CSPBlock. Based on the FPN, an effective and light-weight feature pyramid architecture, namely FPNs-SE, is then proposed and the neck part of YOLOv4 is replaced by FPNs-SE to enhance the feature extraction ability of different scales. In addition, the CIoU loss in the YOLOv4 ignores the similarity measure of the area between the predicted bounding box and the ground-truth bounding box. An effective loss named ACIoU is proposed in this paper in order to handle the above issue and further improve the detection accuracy. The proposed methods are tested on FLAME dataset and network crawled dataset, respectively. The mAP, recall, and precision of YOLO-F are higher by 2.01%, 4.0%, 2.0% on average than those of YOLOv4. With input size of [Formula: see text] and on a single GTX 1660, the operating speed of our method can reach 24.53[Formula: see text]fps, which is improved by 38.04% compared with YOLOv4. The experimental results show that our method is more robust to the small flame and flame-like objects and can achieve the best balance of detection speed and accuracy. The code is made available at https://github.com/Windxy/YOLO-F .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热情的c99发布了新的文献求助10
1秒前
所所应助zhang005on采纳,获得10
2秒前
英俊嚓茶发布了新的文献求助10
2秒前
3秒前
3秒前
lucky应助HOXXXiii采纳,获得10
4秒前
科研通AI5应助丁丁采纳,获得10
4秒前
年华发布了新的文献求助20
4秒前
carne完成签到,获得积分10
4秒前
一一应助zzz采纳,获得30
5秒前
5秒前
6秒前
6秒前
韶安萱发布了新的文献求助10
7秒前
9秒前
Xdy完成签到,获得积分20
9秒前
周周驳回了Ava应助
9秒前
11秒前
顺利安完成签到 ,获得积分10
12秒前
HC发布了新的文献求助10
13秒前
充电宝应助宿醉采纳,获得10
13秒前
15秒前
爆米花应助寒月采纳,获得10
15秒前
星辰大海应助淡定百川采纳,获得10
15秒前
15秒前
只想毕业的混子完成签到,获得积分10
16秒前
伶俐的小白菜完成签到,获得积分10
16秒前
16秒前
17秒前
天行马发布了新的文献求助10
17秒前
oys关闭了oys文献求助
20秒前
Abi发布了新的文献求助10
20秒前
MoriZhang发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
rrrrrr发布了新的文献求助10
22秒前
丁丁发布了新的文献求助10
23秒前
23秒前
Yuxin完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3565965
求助须知:如何正确求助?哪些是违规求助? 3138688
关于积分的说明 9428637
捐赠科研通 2839429
什么是DOI,文献DOI怎么找? 1560725
邀请新用户注册赠送积分活动 729866
科研通“疑难数据库(出版商)”最低求助积分说明 717679