Dual Perspective Contrastive Learning Based Subgraph Anomaly Detection on Attributed Networks

计算机科学 水准点(测量) 节点(物理) 透视图(图形) 异常检测 对偶(语法数字) 人工智能 异常(物理) 特征(语言学) 数据挖掘 骨料(复合) 模式识别(心理学) 机器学习 物理 结构工程 文学类 工程类 哲学 艺术 语言学 复合材料 凝聚态物理 材料科学 地理 大地测量学
作者
Songlin Hu,Minglai Shao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 481-493 被引量:2
标识
DOI:10.1007/978-3-031-15931-2_40
摘要

Network anomaly detection is widely used to discover the anomalies of complex attributed networks in reality. Existing approaches can detect independent abnormal nodes by comparing the attribute differences between nodes and their neighbors. However, in real attributed networks, some abnormal nodes are concentrated in a local subgraph, so it is difficult to find out by comparing neighbor nodes because the features within the subgraph are similar. Furthermore, most of these methods use GCN for feature extraction, which means that each node will indiscriminately aggregate its neighbors, causing the value of normal nodes to be severely affected by the surrounding abnormal nodes. In this paper, we propose an improved unsupervised contrastive learning method that is universally applicable to multiple anomaly forms. It will comprehensively compare the inside and outside of the subgraph as two perspectives and use the knowledge of the trained teacher model to adjust the sampling probability for the selectively aggregating of neighbor nodes. Experimental results show that our proposed framework is not limited by the distribution of abnormal nodes and outperforms the state-of-the-art baseline methods on all four benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
君君发布了新的文献求助10
刚刚
科目三应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
ddssww完成签到,获得积分10
刚刚
lhaoran完成签到,获得积分10
刚刚
优秀的问枫给优秀的问枫的求助进行了留言
刚刚
swallow发布了新的文献求助10
刚刚
小马甲应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
小青椒应助科研通管家采纳,获得30
刚刚
思源应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
元谷雪应助科研通管家采纳,获得10
1秒前
1秒前
斧王应助科研通管家采纳,获得10
1秒前
小青椒应助科研通管家采纳,获得200
1秒前
jnshen完成签到 ,获得积分10
1秒前
科目三应助科研通管家采纳,获得10
2秒前
元谷雪应助科研通管家采纳,获得10
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
小蘑菇应助fangze采纳,获得10
2秒前
2秒前
Akim应助科研通管家采纳,获得10
2秒前
善学以致用应助落雨采纳,获得10
2秒前
传奇3应助飘逸的雨灵采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
小夏饭桶完成签到,获得积分10
2秒前
负责的皮卡丘完成签到,获得积分10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
saturn发布了新的文献求助10
3秒前
元谷雪应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
英吉利25发布了新的文献求助10
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251511
求助须知:如何正确求助?哪些是违规求助? 4415555
关于积分的说明 13746375
捐赠科研通 4287291
什么是DOI,文献DOI怎么找? 2352356
邀请新用户注册赠送积分活动 1349208
关于科研通互助平台的介绍 1308706