Dual Perspective Contrastive Learning Based Subgraph Anomaly Detection on Attributed Networks

计算机科学 水准点(测量) 节点(物理) 透视图(图形) 异常检测 对偶(语法数字) 人工智能 异常(物理) 特征(语言学) 数据挖掘 骨料(复合) 模式识别(心理学) 机器学习 物理 结构工程 文学类 工程类 哲学 艺术 语言学 复合材料 凝聚态物理 材料科学 地理 大地测量学
作者
Songlin Hu,Minglai Shao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 481-493 被引量:2
标识
DOI:10.1007/978-3-031-15931-2_40
摘要

Network anomaly detection is widely used to discover the anomalies of complex attributed networks in reality. Existing approaches can detect independent abnormal nodes by comparing the attribute differences between nodes and their neighbors. However, in real attributed networks, some abnormal nodes are concentrated in a local subgraph, so it is difficult to find out by comparing neighbor nodes because the features within the subgraph are similar. Furthermore, most of these methods use GCN for feature extraction, which means that each node will indiscriminately aggregate its neighbors, causing the value of normal nodes to be severely affected by the surrounding abnormal nodes. In this paper, we propose an improved unsupervised contrastive learning method that is universally applicable to multiple anomaly forms. It will comprehensively compare the inside and outside of the subgraph as two perspectives and use the knowledge of the trained teacher model to adjust the sampling probability for the selectively aggregating of neighbor nodes. Experimental results show that our proposed framework is not limited by the distribution of abnormal nodes and outperforms the state-of-the-art baseline methods on all four benchmark datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
852应助科研通管家采纳,获得50
2秒前
ED应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
2秒前
田様应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
Ricey应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
morena应助科研通管家采纳,获得20
2秒前
ED应助科研通管家采纳,获得30
2秒前
wanci应助科研通管家采纳,获得30
2秒前
Ricey应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
4秒前
嘻嘻嘻发布了新的文献求助10
5秒前
Kenneth发布了新的文献求助10
5秒前
6秒前
科目三应助尊敬寒松采纳,获得10
7秒前
cc发布了新的文献求助10
8秒前
11秒前
Alien发布了新的文献求助10
11秒前
12秒前
坚定的天曼关注了科研通微信公众号
12秒前
刘先生发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
椰汁味完成签到,获得积分10
14秒前
15秒前
15秒前
NexusExplorer应助司空铭采纳,获得10
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993820
求助须知:如何正确求助?哪些是违规求助? 3534462
关于积分的说明 11265617
捐赠科研通 3274313
什么是DOI,文献DOI怎么找? 1806345
邀请新用户注册赠送积分活动 883137
科研通“疑难数据库(出版商)”最低求助积分说明 809712