亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Planning for modular-vehicle transit service system: Model formulation and solution methods

模块化设计 线性化 背景(考古学) 数学优化 计算机科学 服务(商务) 过境(卫星) 公共交通 整数(计算机科学) 整数规划 工程类 非线性系统 运输工程 算法 数学 经济 古生物学 物理 经济 程序设计语言 操作系统 生物 量子力学
作者
Qingyun Tian,Yun Hui Lin,David Z.W. Wang,Yang Liu
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:138: 103627-103627 被引量:38
标识
DOI:10.1016/j.trc.2022.103627
摘要

This paper studies the optimal planning of public transit services with modular vehicles. In the modular service operation, the vehicle is comprised of smaller modular units/pods, which can be assembled/dissembled at some specially designed transit stations. The planning decisions are to determine the locations of the specially constructed stations enabling station-wise assembling/dissembling of modular units. Meanwhile, the capacity of these stations, i.e., the maximum number of modular units that can be accommodated, will also be determined. The optimal vehicle formation at these stations will be considered for the multi-period passenger demand to evaluate the system performance. Aiming to minimize the total cost of the operator and passengers, we formulate this problem into a mixed-integer nonlinear program (MINLP). Two solution methods are proposed to solve the problem. One is to transform the formulated MINLP into a mixed-integer linear program (MILP) using various linearization reformulation techniques, which can be solved by using many existing solution methods for MILP. Despite that this method ensures exact solutions, its solution efficiency is compromised. To solve a practical large-size problem, we propose another solution method applying surrogate model-based optimization approaches. A case study in the context of a proposed Singapore dynamic autonomous road transit (DART) line is conducted. Numerical experiments have been carried out to test the validity of the model formulation and the solution performance of the proposed solution methods. The advantage of the modular-vehicle transit service in significantly reducing the operating cost and passengers’ travel time costs has been demonstrated as well. This study offers the public transportation planners a useful tool for determining optimal operation strategies for the future transit service system with modular vehicles. • Determine the optimal planning of the transit services with modular vehicles. • Consider the optimal operational strategy in terms of vehicle formation at stations in a multi-period service time horizon. • Propose the exact linearized MILP method and the surrogate model-based optimization approach to solve the model. • Conduct sensitivity analysis in numerical experiments to shed light on the planning of the transit service with modular vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ybf完成签到,获得积分10
4秒前
安徒完成签到,获得积分10
5秒前
sunny完成签到 ,获得积分10
6秒前
金色热浪完成签到 ,获得积分10
12秒前
完美世界应助doctor2023采纳,获得10
14秒前
某某完成签到 ,获得积分10
17秒前
海咲umi应助满意的世界采纳,获得10
19秒前
刺1656完成签到,获得积分10
22秒前
HRXYZ发布了新的文献求助10
25秒前
好看的花花鱼完成签到 ,获得积分10
26秒前
杜若完成签到,获得积分10
28秒前
怂怂鼠完成签到,获得积分10
30秒前
HRXYZ完成签到,获得积分10
40秒前
Criminology34应助科研通管家采纳,获得10
45秒前
48秒前
姚老表完成签到,获得积分10
52秒前
53秒前
54秒前
1分钟前
海咲umi应助烈阳采纳,获得20
1分钟前
wanci应助空凌采纳,获得10
1分钟前
星辰大海应助刘润远采纳,获得10
1分钟前
loung发布了新的文献求助50
1分钟前
yyds应助qingsyxuan采纳,获得100
1分钟前
1分钟前
qingsyxuan给qingsyxuan的求助进行了留言
1分钟前
凶狠的丹琴完成签到,获得积分10
1分钟前
小江发布了新的文献求助10
1分钟前
窝窝窝书完成签到,获得积分10
1分钟前
yxl要顺利毕业_发6篇C完成签到,获得积分10
1分钟前
动听衬衫完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
刘润远发布了新的文献求助10
1分钟前
Akim应助小江采纳,获得10
1分钟前
1分钟前
TXZ06完成签到,获得积分10
1分钟前
一日落叶发布了新的文献求助10
1分钟前
开朗白山完成签到,获得积分10
1分钟前
Orange应助菜菜采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
ACOG Practice Bulletin: Polycystic Ovary Syndrome 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603239
求助须知:如何正确求助?哪些是违规求助? 4688315
关于积分的说明 14853255
捐赠科研通 4688366
什么是DOI,文献DOI怎么找? 2540526
邀请新用户注册赠送积分活动 1506981
关于科研通互助平台的介绍 1471523