Planning for modular-vehicle transit service system: Model formulation and solution methods

模块化设计 线性化 背景(考古学) 数学优化 计算机科学 服务(商务) 过境(卫星) 公共交通 整数(计算机科学) 整数规划 工程类 非线性系统 运输工程 算法 数学 操作系统 古生物学 物理 经济 量子力学 经济 生物 程序设计语言
作者
Qingyun Tian,Yun Hui Lin,David Z.W. Wang,Yang Liu
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier]
卷期号:138: 103627-103627 被引量:32
标识
DOI:10.1016/j.trc.2022.103627
摘要

This paper studies the optimal planning of public transit services with modular vehicles. In the modular service operation, the vehicle is comprised of smaller modular units/pods, which can be assembled/dissembled at some specially designed transit stations. The planning decisions are to determine the locations of the specially constructed stations enabling station-wise assembling/dissembling of modular units. Meanwhile, the capacity of these stations, i.e., the maximum number of modular units that can be accommodated, will also be determined. The optimal vehicle formation at these stations will be considered for the multi-period passenger demand to evaluate the system performance. Aiming to minimize the total cost of the operator and passengers, we formulate this problem into a mixed-integer nonlinear program (MINLP). Two solution methods are proposed to solve the problem. One is to transform the formulated MINLP into a mixed-integer linear program (MILP) using various linearization reformulation techniques, which can be solved by using many existing solution methods for MILP. Despite that this method ensures exact solutions, its solution efficiency is compromised. To solve a practical large-size problem, we propose another solution method applying surrogate model-based optimization approaches. A case study in the context of a proposed Singapore dynamic autonomous road transit (DART) line is conducted. Numerical experiments have been carried out to test the validity of the model formulation and the solution performance of the proposed solution methods. The advantage of the modular-vehicle transit service in significantly reducing the operating cost and passengers’ travel time costs has been demonstrated as well. This study offers the public transportation planners a useful tool for determining optimal operation strategies for the future transit service system with modular vehicles. • Determine the optimal planning of the transit services with modular vehicles. • Consider the optimal operational strategy in terms of vehicle formation at stations in a multi-period service time horizon. • Propose the exact linearized MILP method and the surrogate model-based optimization approach to solve the model. • Conduct sensitivity analysis in numerical experiments to shed light on the planning of the transit service with modular vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟雾完成签到,获得积分10
刚刚
刘大大完成签到,获得积分10
刚刚
wanidamm完成签到,获得积分10
刚刚
1秒前
万能图书馆应助暗中观察采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
2秒前
wang研通应助科研通管家采纳,获得30
2秒前
攀攀应助科研通管家采纳,获得10
2秒前
xjcy应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
3秒前
默默纲发布了新的文献求助30
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
慕青应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
86400发布了新的文献求助10
5秒前
Laow完成签到,获得积分10
6秒前
zhz完成签到,获得积分10
6秒前
酷波er应助lwl采纳,获得10
7秒前
7秒前
kira717关注了科研通微信公众号
7秒前
善良安梦发布了新的文献求助10
7秒前
8秒前
到底是谁还在做牛马完成签到 ,获得积分10
8秒前
Laow发布了新的文献求助10
9秒前
9秒前
廖无极完成签到 ,获得积分10
11秒前
12秒前
赖驳发布了新的文献求助30
12秒前
86400完成签到,获得积分10
12秒前
保安队长完成签到,获得积分10
12秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140687
求助须知:如何正确求助?哪些是违规求助? 2791513
关于积分的说明 7799229
捐赠科研通 2447844
什么是DOI,文献DOI怎么找? 1302096
科研通“疑难数据库(出版商)”最低求助积分说明 626439
版权声明 601194