Context Prior Guided Semantic Modeling for Biomedical Image Segmentation

计算机科学 分割 人工智能 背景(考古学) 模式识别(心理学) 特征(语言学) 判别式 图像分割 语义学(计算机科学) 空间语境意识 计算机视觉 古生物学 语言学 哲学 生物 程序设计语言
作者
Huisi Wu,Zhaoze Wang,Zhuoying Li,Zhenkun Wen,Jing Qin
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (2s): 1-19
标识
DOI:10.1145/3558520
摘要

Most state-of-the-art deep networks proposed for biomedical image segmentation are developed based on U-Net. While remarkable success has been achieved, its inherent limitations hinder it from yielding more precise segmentation. First, its receptive field is limited due to the fixed kernel size, which prevents the network from modeling global context information. Second, when spatial information captured by shallower layer is directly transmitted to higher layers by skip connections, the process inevitably introduces noise and irrelevant information to feature maps and blurs their semantic meanings. In this article, we propose a novel segmentation network equipped with a new context prior guidance (CPG) module to overcome these limitations for biomedical image segmentation, namely context prior guidance network (CPG-Net). Specifically, we first extract a set of context priors under the supervision of a coarse segmentation and then employ these context priors to model the global context information and bridge the spatial-semantic gap between high-level features and low-level features. The CPG module contains two major components: context prior representation (CPR) and semantic complement flow (SCF). CPR is used to extract pixels belonging to the same objects and hence produce more discriminative features to distinguish different objects. We further introduce deep semantic information for each CPR by the SCF mechanism to compensate the semantic information diluted during the decoding. We extensively evaluate the proposed CPG-Net on three famous biomedical image segmentation tasks with diverse imaging modalities and semantic environments. Experimental results demonstrate the effectiveness of our network, consistently outperforming state-of-the-art segmentation networks in all the three tasks. Codes are available at https://github.com/zzw-szu/CPGNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单纯青雪发布了新的文献求助10
刚刚
1秒前
暮封发布了新的文献求助10
1秒前
zzy完成签到,获得积分10
1秒前
2秒前
NXK发布了新的文献求助10
2秒前
落寞秋柔关注了科研通微信公众号
2秒前
Ir完成签到,获得积分10
3秒前
bkagyin应助Doc_Chen采纳,获得10
3秒前
4秒前
wanci应助wshengnan采纳,获得10
4秒前
5秒前
小马甲应助活力的母鸡采纳,获得10
5秒前
Ir发布了新的文献求助10
6秒前
westbrook完成签到,获得积分10
6秒前
暮封完成签到,获得积分10
6秒前
6秒前
又又发布了新的文献求助10
6秒前
meimei完成签到,获得积分20
8秒前
Kiwi完成签到,获得积分10
8秒前
9秒前
9秒前
科研通AI2S应助高兴的彩虹采纳,获得10
10秒前
聪明亦玉发布了新的文献求助20
10秒前
NXK完成签到,获得积分10
11秒前
11秒前
11秒前
cccc完成签到,获得积分10
11秒前
12秒前
12秒前
pluto应助pfuhh采纳,获得10
13秒前
负责长颈鹿完成签到,获得积分10
14秒前
meimei发布了新的文献求助10
14秒前
斯文败类应助自然的砖头采纳,获得10
14秒前
854fycchjh发布了新的文献求助30
15秒前
wshengnan完成签到,获得积分10
16秒前
17秒前
科研通AI5应助踏实雪一采纳,获得10
17秒前
18秒前
Wuhuhu应助安详的甜瓜采纳,获得10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794