Demand-Side Regulation Provision of Virtual Power Plants Consisting of Interconnected Microgrids Through Double-Stage Double-Layer Optimization

微电网 需求响应 调度(生产过程) 整数规划 计算机科学 虚拟发电厂 可再生能源 线性规划 电力市场 网格 数学优化 可靠性工程 工程类 分布式发电 运营管理 电气工程 几何学 数学 算法
作者
Jiaqi Liu,Shenglong Yu,Hongji Hu,Junbo Zhao,Hieu Trinh
出处
期刊:IEEE Transactions on Smart Grid [Institute of Electrical and Electronics Engineers]
卷期号:14 (3): 1946-1957 被引量:15
标识
DOI:10.1109/tsg.2022.3203466
摘要

This study proposes a double-stage double-layer optimization model for a virtual power plant (VPP) consisting of interconnected microgrids (IMGs) with integrated renewable energy sources (RESs) and energy storage systems (ESSs) to realize demand-side ancillary service, considering intra energy sharing among the IMGs within the VPP. In particular, the first stage, day-ahead scheduling, is carried out to predict the hourly electricity consumption baseline and regulation capacity for the next day, the latter of which results in a reward from the market operator. In the second stage, real-time power consumption control is performed by following the dynamic regulation (or RegD) signal. The second stage is further divided into two layers: the upper layer distributes demand response (DR) signals from the main grid according to the electricity unit price of each microgrid (MG) and exchanges electricity among MGs based on a new energy sharing mechanism to reduce RegD-following violations. The lower layer performs real-time power consumption control for each MG to minimize operation costs. The overall goal is to maximize the reward in the day-ahead stage and minimize the RegD-following violation penalty in the real-time stage, so as to minimize the overall operation cost of the VPP. The optimization is written in five objective functions, which are solved using mixed integer linear programming (MILP) in Gurobi solvers. Extensive simulation and comparison studies are carried out, and numerical results show that compared with traditional MG operations, VPPs comprised of IMGs can reduce operation costs and provide better frequency support for the grid through superior RegD signal following performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木子发布了新的文献求助10
1秒前
少寒发布了新的文献求助10
2秒前
MoonFlows应助草莓奶昔采纳,获得20
2秒前
杨昕发布了新的文献求助10
3秒前
4秒前
4秒前
123发布了新的文献求助10
4秒前
泡沫发布了新的文献求助10
5秒前
完美的小虾米完成签到 ,获得积分10
6秒前
6秒前
鲤鱼寒荷发布了新的文献求助10
8秒前
JamesPei应助杨昕采纳,获得10
8秒前
跳跃发布了新的文献求助10
9秒前
李爱国应助Murphy采纳,获得10
10秒前
桃桃发布了新的文献求助10
12秒前
科研小白发布了新的文献求助10
13秒前
乾明少侠完成签到 ,获得积分10
14秒前
14秒前
ssk完成签到,获得积分10
15秒前
su园长发布了新的文献求助10
18秒前
天天快乐应助少寒采纳,获得10
19秒前
木子李关注了科研通微信公众号
19秒前
爱科研的龙完成签到,获得积分10
20秒前
20秒前
21秒前
SciGPT应助小张采纳,获得10
24秒前
元谷雪发布了新的文献求助10
25秒前
fox199753206完成签到,获得积分10
26秒前
DAISHU发布了新的文献求助10
26秒前
aaa完成签到,获得积分20
26秒前
27秒前
LX发布了新的文献求助10
28秒前
深情安青应助Hear采纳,获得10
29秒前
fox199753206发布了新的文献求助10
30秒前
闵不悔完成签到,获得积分10
30秒前
QXR完成签到,获得积分10
31秒前
英俊的铭应助的确采纳,获得10
31秒前
31秒前
lzl完成签到,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143605
求助须知:如何正确求助?哪些是违规求助? 2795002
关于积分的说明 7813063
捐赠科研通 2451122
什么是DOI,文献DOI怎么找? 1304258
科研通“疑难数据库(出版商)”最低求助积分说明 627213
版权声明 601386