Nanoparticles/Parabolic Nanobowl Hybrid Structure as a Surface-Enhanced Raman Scattering Substrate: Insights Using the FDTD Method

时域有限差分法 拉曼散射 基质(水族馆) 纳米颗粒 材料科学 电场 表面等离子共振 等离子体子 表面等离子体激元 拉曼光谱 散射 曲率 纳米技术 介电常数 表面等离子体子 光电子学 光学 电介质 物理 几何学 地质学 海洋学 量子力学 数学
作者
Jinqiao Lu,Zhang De,Qiang Chen,Ziyang Shang,Jie Huang,Pei Liang
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:126 (33): 14211-14218 被引量:6
标识
DOI:10.1021/acs.jpcc.2c04250
摘要

Nanobowl structures are commonly used as substrates for surface-enhanced Raman scattering (SERS) detection due to their high plasmonic activity. In this work, we introduce and investigate a superenhancing potential structure, nanoparticles (NPs) in a parabolic nanobowl (PNB). Moreover, the optimal parameters of the NPs in the PNB structure are obtained and the origin of plasmon enhancement is analyzed. The electric field distribution and the electromagnetic field enhancement factor MSERS of the PNB structure are obtained via the finite-difference time-domain (FDTD) method. We found that the electric field enhancement originated from the coupling of the surface plasmon polariton (SPP) within the PNB and the interstitial local surface plasmon resonance (LSPR) of the nanoparticles. By manipulating the curvature of the PNB, the size of the NPs, and the materials of the NPs in PNB structures, the plasmon resonance of both NPs and the PNB became strongest. When the curvature of the PNB is 2.9 μm–1, the wide-range enhancive electromagnetic field generated at the bottom of the PNB couples best with the LSPR of the NPs. The NP size is recommended to be in the range of 46–56 nm. For the choice of materials, it is found that the maximum enhancement is on the order of 1010 when noble metals Au and Ag are used as the materials of the PNB and NPs. Since the permittivity imaginary part of Si is closer to zero, a maximum enhancement factor reaching 1011 magnitude is obtained when Si is used as the material of the PNB. These results indicate that the PNB structure shows powerful SERS enhancement and is expected to be applied to the detection of environmental pollutants, such as microplastics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HYLynn应助hetao286采纳,获得10
刚刚
2秒前
2秒前
夯大力发布了新的文献求助10
2秒前
2秒前
3秒前
自觉沛芹完成签到,获得积分10
3秒前
YukiXu完成签到 ,获得积分10
3秒前
3秒前
桐桐应助SXM采纳,获得10
4秒前
波特卡斯D艾斯完成签到 ,获得积分10
5秒前
852应助排骨炖豆角采纳,获得10
6秒前
6秒前
顾矜应助木子采纳,获得10
6秒前
feng发布了新的文献求助10
6秒前
成就的小熊猫完成签到,获得积分10
7秒前
7秒前
Morgenstern_ZH完成签到,获得积分10
8秒前
hua发布了新的文献求助10
8秒前
_Forelsket_完成签到,获得积分10
8秒前
8秒前
半颗橙子完成签到 ,获得积分10
10秒前
科研通AI5应助zmy采纳,获得10
10秒前
善学以致用应助enoot采纳,获得10
11秒前
JamesPei应助失眠的血茗采纳,获得10
11秒前
青山发布了新的文献求助10
11秒前
亻鱼发布了新的文献求助10
12秒前
脑洞疼应助成就的小熊猫采纳,获得10
12秒前
12秒前
waterclouds完成签到 ,获得积分10
12秒前
圆圈儿完成签到,获得积分10
12秒前
司空剑封完成签到,获得积分10
13秒前
13秒前
海棠yiyi完成签到,获得积分10
13秒前
13秒前
梁小鑫发布了新的文献求助10
13秒前
Jenny应助圈圈采纳,获得10
14秒前
内向青文完成签到,获得积分10
14秒前
lefora完成签到,获得积分10
14秒前
丰知然应助CO2采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740