Blood Test for Breast Cancer Screening through the Detection of Tumor-Associated Circulating Transcripts

乳腺癌 液体活检 癌症 循环肿瘤细胞 肿瘤科 内科学 逻辑回归 活检 医学 阶段(地层学) 生物 转移 古生物学
作者
Sunyoung Park,Sung Gwe Ahn,Jee Ye Kim,Jungho Kim,Hyun Ju Han,Dasom Hwang,Jungmin Park,Hyung Seok Park,Seho Park,Gun Min Kim,Joohyuk Sohn,Jeong Eon Lee,Yong Uk Song,Hyeyoung Lee,Seung Il Kim
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:23 (16): 9140-9140 被引量:3
标识
DOI:10.3390/ijms23169140
摘要

Liquid biopsy has been emerging for early screening and treatment monitoring at each cancer stage. However, the current blood-based diagnostic tools in breast cancer have not been sufficient to understand patient-derived molecular features of aggressive tumors individually. Herein, we aimed to develop a blood test for the early detection of breast cancer with cost-effective and high-throughput considerations in order to combat the challenges associated with precision oncology using mRNA-based tests. We prospectively evaluated 719 blood samples from 404 breast cancer patients and 315 healthy controls, and identified 10 mRNA transcripts whose expression is increased in the blood of breast cancer patients relative to healthy controls. Modeling of the tumor-associated circulating transcripts (TACTs) is performed by means of four different machine learning techniques (artificial neural network (ANN), decision tree (DT), logistic regression (LR), and support vector machine (SVM)). The ANN model had superior sensitivity (90.2%), specificity (80.0%), and accuracy (85.7%) compared with the other three models. Relative to the value of 90.2% achieved using the TACT assay on our test set, the sensitivity values of other conventional assays (mammogram, CEA, and CA 15-3) were comparable or much lower, at 89%, 7%, and 5%, respectively. The sensitivity, specificity, and accuracy of TACTs were appreciably consistent across the different breast cancer stages, suggesting the potential of the TACTs assay as an early diagnosis and prediction of poor outcomes. Our study potentially paves the way for a simple and accurate diagnostic and prognostic tool for liquid biopsy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无花果应助木卫二采纳,获得10
3秒前
风中雨竹发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
科研通AI6应助科研通管家采纳,获得20
9秒前
科研通AI6应助科研通管家采纳,获得200
9秒前
9秒前
wanci应助科研通管家采纳,获得10
9秒前
9秒前
科目三应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
无极微光应助科研通管家采纳,获得20
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得10
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
10秒前
geqian发布了新的文献求助10
10秒前
Ka发布了新的文献求助10
10秒前
12秒前
单单来迟发布了新的文献求助10
12秒前
华桦子发布了新的文献求助10
13秒前
畅快的静芙完成签到,获得积分10
14秒前
Dou完成签到,获得积分10
16秒前
董海晴发布了新的文献求助10
18秒前
FashionBoy应助123456采纳,获得10
19秒前
吴玉杰完成签到,获得积分10
19秒前
blue完成签到,获得积分10
21秒前
李健的小迷弟应助远方采纳,获得10
21秒前
yznfly应助flying采纳,获得50
21秒前
23秒前
谨慎的CZ完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601826
求助须知:如何正确求助?哪些是违规求助? 4687194
关于积分的说明 14847943
捐赠科研通 4682030
什么是DOI,文献DOI怎么找? 2539559
邀请新用户注册赠送积分活动 1506378
关于科研通互助平台的介绍 1471340