Blood Test for Breast Cancer Screening through the Detection of Tumor-Associated Circulating Transcripts

乳腺癌 液体活检 癌症 循环肿瘤细胞 肿瘤科 内科学 逻辑回归 活检 医学 阶段(地层学) 生物 转移 古生物学
作者
Sunyoung Park,Sung Gwe Ahn,Jee Ye Kim,Jungho Kim,Hyun Ju Han,Dasom Hwang,Jungmin Park,Hyung Seok Park,Seho Park,Gun Min Kim,Joohyuk Sohn,Jeong Eon Lee,Yong Uk Song,Hyeyoung Lee,Seung Il Kim
出处
期刊:International Journal of Molecular Sciences [MDPI AG]
卷期号:23 (16): 9140-9140 被引量:3
标识
DOI:10.3390/ijms23169140
摘要

Liquid biopsy has been emerging for early screening and treatment monitoring at each cancer stage. However, the current blood-based diagnostic tools in breast cancer have not been sufficient to understand patient-derived molecular features of aggressive tumors individually. Herein, we aimed to develop a blood test for the early detection of breast cancer with cost-effective and high-throughput considerations in order to combat the challenges associated with precision oncology using mRNA-based tests. We prospectively evaluated 719 blood samples from 404 breast cancer patients and 315 healthy controls, and identified 10 mRNA transcripts whose expression is increased in the blood of breast cancer patients relative to healthy controls. Modeling of the tumor-associated circulating transcripts (TACTs) is performed by means of four different machine learning techniques (artificial neural network (ANN), decision tree (DT), logistic regression (LR), and support vector machine (SVM)). The ANN model had superior sensitivity (90.2%), specificity (80.0%), and accuracy (85.7%) compared with the other three models. Relative to the value of 90.2% achieved using the TACT assay on our test set, the sensitivity values of other conventional assays (mammogram, CEA, and CA 15-3) were comparable or much lower, at 89%, 7%, and 5%, respectively. The sensitivity, specificity, and accuracy of TACTs were appreciably consistent across the different breast cancer stages, suggesting the potential of the TACTs assay as an early diagnosis and prediction of poor outcomes. Our study potentially paves the way for a simple and accurate diagnostic and prognostic tool for liquid biopsy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
标致凡儿完成签到 ,获得积分10
1秒前
天天快乐应助zhuyuxin采纳,获得10
1秒前
华仔应助陌上之心采纳,获得10
2秒前
飘逸百褶裙完成签到,获得积分20
7秒前
补药学习发布了新的文献求助10
8秒前
proteinpurify完成签到,获得积分10
9秒前
9秒前
宁人完成签到,获得积分20
11秒前
12秒前
vera完成签到,获得积分10
13秒前
14秒前
02发布了新的文献求助10
15秒前
宁人发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
Ly完成签到,获得积分20
16秒前
简单花花发布了新的文献求助10
17秒前
科研通AI6应助美好凝莲采纳,获得30
17秒前
泡泡完成签到 ,获得积分10
17秒前
ASHES发布了新的文献求助10
19秒前
小二郎应助vincent采纳,获得10
20秒前
嗡嗡嗡完成签到,获得积分10
20秒前
Ly发布了新的文献求助10
21秒前
儒雅的雁山完成签到 ,获得积分10
24秒前
24秒前
无花果应助马里奥采纳,获得10
24秒前
Booiys完成签到,获得积分10
25秒前
25秒前
绒裤病毒发布了新的文献求助10
25秒前
青田101完成签到,获得积分10
26秒前
fishhh完成签到,获得积分10
27秒前
庸人自扰完成签到,获得积分10
27秒前
27秒前
爆米花应助细心的如天采纳,获得10
28秒前
量子星尘发布了新的文献求助10
28秒前
xyy发布了新的文献求助30
29秒前
四海发布了新的文献求助10
29秒前
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5530788
求助须知:如何正确求助?哪些是违规求助? 4619762
关于积分的说明 14570057
捐赠科研通 4559290
什么是DOI,文献DOI怎么找? 2498318
邀请新用户注册赠送积分活动 1478269
关于科研通互助平台的介绍 1449838