Blood Test for Breast Cancer Screening through the Detection of Tumor-Associated Circulating Transcripts

乳腺癌 液体活检 癌症 循环肿瘤细胞 肿瘤科 内科学 逻辑回归 活检 医学 阶段(地层学) 生物 转移 古生物学
作者
Sunyoung Park,Sung Gwe Ahn,Jee Ye Kim,Jungho Kim,Hyun Ju Han,Dasom Hwang,Jungmin Park,Hyung Seok Park,Seho Park,Gun Min Kim,Joohyuk Sohn,Jeong Eon Lee,Yong Uk Song,Hyeyoung Lee,Seung Il Kim
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:23 (16): 9140-9140 被引量:3
标识
DOI:10.3390/ijms23169140
摘要

Liquid biopsy has been emerging for early screening and treatment monitoring at each cancer stage. However, the current blood-based diagnostic tools in breast cancer have not been sufficient to understand patient-derived molecular features of aggressive tumors individually. Herein, we aimed to develop a blood test for the early detection of breast cancer with cost-effective and high-throughput considerations in order to combat the challenges associated with precision oncology using mRNA-based tests. We prospectively evaluated 719 blood samples from 404 breast cancer patients and 315 healthy controls, and identified 10 mRNA transcripts whose expression is increased in the blood of breast cancer patients relative to healthy controls. Modeling of the tumor-associated circulating transcripts (TACTs) is performed by means of four different machine learning techniques (artificial neural network (ANN), decision tree (DT), logistic regression (LR), and support vector machine (SVM)). The ANN model had superior sensitivity (90.2%), specificity (80.0%), and accuracy (85.7%) compared with the other three models. Relative to the value of 90.2% achieved using the TACT assay on our test set, the sensitivity values of other conventional assays (mammogram, CEA, and CA 15-3) were comparable or much lower, at 89%, 7%, and 5%, respectively. The sensitivity, specificity, and accuracy of TACTs were appreciably consistent across the different breast cancer stages, suggesting the potential of the TACTs assay as an early diagnosis and prediction of poor outcomes. Our study potentially paves the way for a simple and accurate diagnostic and prognostic tool for liquid biopsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
焦星星发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
奶油泡fu完成签到 ,获得积分10
3秒前
深情安青应助忧郁的向雁采纳,获得10
3秒前
研友Zby14n发布了新的文献求助10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
charming完成签到 ,获得积分10
6秒前
叮当发布了新的文献求助10
6秒前
Crane发布了新的文献求助10
7秒前
齐乾宁完成签到,获得积分10
7秒前
7秒前
风筝鱼完成签到 ,获得积分10
7秒前
科研通AI5应助虚心的访烟采纳,获得30
7秒前
wanci应助Sandstorm采纳,获得10
7秒前
8秒前
李健应助菜菜采纳,获得10
9秒前
葛立峰发布了新的文献求助10
10秒前
freshabc完成签到,获得积分10
10秒前
99668完成签到,获得积分10
10秒前
852应助乐观的海采纳,获得10
10秒前
科研通AI6应助Deyong采纳,获得10
10秒前
Jun完成签到 ,获得积分10
10秒前
12秒前
Crane完成签到,获得积分10
12秒前
yoona发布了新的文献求助10
13秒前
彭于晏应助科研通管家采纳,获得10
14秒前
Rita应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908652
求助须知:如何正确求助?哪些是违规求助? 4185172
关于积分的说明 12997027
捐赠科研通 3951974
什么是DOI,文献DOI怎么找? 2167233
邀请新用户注册赠送积分活动 1185712
关于科研通互助平台的介绍 1092321