亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Content-based multiple evidence fusion on EEG and eye movements for mild depression recognition

计算机科学 脑电图 人工智能 模态(人机交互) 模式 模式识别(心理学) 眼球运动 传感器融合 萧条(经济学) 马氏距离 混淆矩阵 机器学习 心理学 精神科 经济 社会学 宏观经济学 社会科学
作者
Jing Zhu,Shiqing Wei,Xiannian Xie,Changlin Yang,Yizhou Li,Xiaowei Li,Bin Hu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:226: 107100-107100 被引量:7
标识
DOI:10.1016/j.cmpb.2022.107100
摘要

Depression is a serious neurological disorder that has become a major health problem worldwide. The detection of mild depression is important for the diagnosis of depression in early stages. This research seeks to find a more accurate fusion model which can be used for mild depression detection using Electroencephalography and eye movement data.This study proposes a content-based multiple evidence fusion (CBMEF) method, which fuses EEG and eye movement data at decision level. The method mainly includes two modules, the classification performance matrix module and the dual-weight fusion module. The classification performance matrices of different modalities are estimated by Bayesian rule based on confusion matrix and Mahalanobis distance, and the matrices were used to correct the classification results. Then the relative conflict degree of each modality is calculated, and different weights are assigned to the above modalities at the decision fusion layer according to this conflict degree.The experimental results show that the proposed method outperforms other fusion methods as well as the single modality results. The highest accuracies achieved 91.12%, and sensitivity, specificity and precision were 89.20%, 93.03%, 92.76%.The promising results showed the potential of the proposed approach for the detection of mild depression. The idea of introducing the classification performance matrix and the dual-weight model to multimodal biosignals fusion casts a new light on the researches of depression recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潘润朗完成签到 ,获得积分10
11秒前
斯寜应助Yuanyuan采纳,获得20
14秒前
30秒前
mtt发布了新的文献求助10
34秒前
赘婿应助ChencanFang采纳,获得10
39秒前
45秒前
充电宝应助mtt采纳,获得10
46秒前
ChencanFang发布了新的文献求助10
51秒前
招水若离完成签到,获得积分0
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
斯寜应助科研通管家采纳,获得10
1分钟前
星辰大海应助morena采纳,获得10
1分钟前
鱼鱼鱼完成签到,获得积分10
2分钟前
曾经的彩虹完成签到,获得积分10
2分钟前
sailingluwl完成签到,获得积分10
2分钟前
3分钟前
俊逸的刺猬完成签到,获得积分10
3分钟前
3分钟前
3分钟前
脑洞疼应助俊逸的刺猬采纳,获得20
3分钟前
疯狂大泡芙完成签到,获得积分10
3分钟前
3分钟前
Chocolat_Chaud完成签到,获得积分10
3分钟前
斯寜应助科研通管家采纳,获得10
3分钟前
3分钟前
yoyofun应助Marciu33采纳,获得10
4分钟前
乐乐应助搞怪的山水采纳,获得10
5分钟前
5分钟前
cnspower完成签到,获得积分0
5分钟前
5分钟前
852应助小螃蟹采纳,获得10
5分钟前
5分钟前
金钰贝儿完成签到,获得积分10
5分钟前
AnJaShua完成签到 ,获得积分10
5分钟前
Ava应助weiwei采纳,获得10
5分钟前
5分钟前
5分钟前
斯寜应助科研通管家采纳,获得10
5分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725305
求助须知:如何正确求助?哪些是违规求助? 3270317
关于积分的说明 9965491
捐赠科研通 2985324
什么是DOI,文献DOI怎么找? 1637875
邀请新用户注册赠送积分活动 777746
科研通“疑难数据库(出版商)”最低求助积分说明 747186