Advances in model-based reinforcement learning for adaptive optics control

系外行星 强化学习 自适应光学 计算机科学 波前 渲染(计算机图形) 波前传感器 人工智能 星星 计算机视觉 物理 天文 光学
作者
Jalo Nousiainen,Byron Engler,M. Kasper,Tapio Helin,Cédric Taïssir Heritier,Chang Rajani
标识
DOI:10.1117/12.2630317
摘要

Direct imaging of Earth-like exoplanets is one of the significant scientific drivers of the next generation of ground-based telescopes. Typically, Earth-like exoplanets are located at tiny angular separations from their host stars rendering their identification difficult. Consequently, the adaptive optics (AO) system's control algorithm must be carefully designed to distinguish the exoplanet from the residual light produced by the host star. A new promising avenue of research aimed at improving AO control builds on data-driven control methods such as Reinforcement Learning (RL) methods. It is an active branch of the machine learning research field, where control of a system is learned through interaction with the environment. Thus, RL can be seen as an automated approach for AO control. In particular, model-based reinforcement learning (MBRL) has been shown to cope with both temporal and misregistration errors. Similarly, it has been demonstrated to adapt to non-linear wavefront sensing while being efficient to train and execute. In this work, we implement and adapt an RL method called Policy Optimizations for AO (PO4AO) to the GHOST test bench at ESO headquarters, where we show strong performance on cascaded AO system lab simulation. Further, the results align with the previously obtained results with the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pt-SACs完成签到,获得积分10
4秒前
小二郎应助夏侯无色采纳,获得10
4秒前
Sicily完成签到,获得积分10
8秒前
9秒前
默默碧空发布了新的文献求助10
10秒前
Song完成签到 ,获得积分10
13秒前
冷傲凝琴发布了新的文献求助10
15秒前
上官若男应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
wu8577应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
17秒前
李健应助科研通管家采纳,获得30
17秒前
17秒前
SciGPT应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
17秒前
星辰大海应助科研通管家采纳,获得10
17秒前
17秒前
wu8577应助科研通管家采纳,获得10
17秒前
Akim应助欢喜的跳跳糖采纳,获得10
18秒前
19秒前
21秒前
英姑应助MRCHONG采纳,获得10
23秒前
XieMeina发布了新的文献求助30
24秒前
doudou完成签到,获得积分10
24秒前
玊尔发布了新的文献求助10
25秒前
博学为农发布了新的文献求助10
26秒前
Andyhacker完成签到,获得积分10
28秒前
小焦儿完成签到,获得积分10
33秒前
塔莉娅完成签到,获得积分10
34秒前
36秒前
烟花应助budingman采纳,获得20
37秒前
37秒前
38秒前
称心凡霜完成签到,获得积分10
39秒前
xiaoyao发布了新的文献求助30
40秒前
40秒前
40秒前
42秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962340
求助须知:如何正确求助?哪些是违规求助? 3508487
关于积分的说明 11141064
捐赠科研通 3241149
什么是DOI,文献DOI怎么找? 1791353
邀请新用户注册赠送积分活动 872842
科研通“疑难数据库(出版商)”最低求助积分说明 803382