Clifford分析
数学
狄拉克算符
数学分析
狄拉克代数
积分方程
亥姆霍兹方程
狄拉克测度
操作员(生物学)
边值问题
狄拉克方程
数学物理
狄拉克旋量
生物化学
化学
抑制因子
转录因子
基因
作者
Hongfen Yuan,Guohong Shi,Xiushen Hu
出处
期刊:Axioms
[Multidisciplinary Digital Publishing Institute]
日期:2024-04-04
卷期号:13 (4): 238-238
标识
DOI:10.3390/axioms13040238
摘要
The perturbed Dirac operators yield a factorization for the well-known Helmholtz equation. In this paper, using the fundamental solution for the perturbed Dirac operator, we define Cauchy-type integral operators (singular integral operators with a Cauchy kernel). With the help of these operators, we investigate generalized Riemann and Dirichlet problems for the perturbed Dirac equation which is a higher-dimensional generalization of a Vekua-type equation. Furthermore, applying the generalized Cauchy-type integral operator F˜λ, we construct the Mann iterative sequence and prove that the iterative sequence strongly converges to the fixed point of operator F˜λ.
科研通智能强力驱动
Strongly Powered by AbleSci AI