Online Advertisement Allocation Under Customer Choices and Algorithmic Fairness

广告 计算机科学 在线广告 运筹学 业务 微观经济学 营销 经济 互联网 万维网 数学
作者
X P Li,Ying Rong,Renyu Zhang,Huan Zheng
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:12
标识
DOI:10.1287/mnsc.2021.04091
摘要

Advertising is a crucial revenue source for e-commerce platforms and a vital online marketing tool for their sellers. In this paper, we explore dynamic ad allocation with limited slots upon each customer’s arrival for an e-commerce platform, where customers follow a choice model when clicking the ads. Motivated by the recent advocacy for the algorithmic fairness of online ad delivery, we adjust the value from advertising by a general fairness metric evaluated with the click-throughs of different ads and customer types. The original online ad-allocation problem is intractable, so we propose a novel stochastic program framework (called two-stage target-debt) that first decides the click-through targets and then devises an ad-allocation policy to satisfy these targets in the second stage. We show the asymptotic equivalence between the original problem, the relaxed click-through target optimization, and the fluid-approximation ( Fluid ) convex program. We also design a debt-weighted offer-set algorithm and demonstrate that, as long as the problem size scales to infinity, this algorithm is (asymptotically) optimal under the optimal first-stage click-through target. Compared with the Fluid heuristic and its resolving variants, our approach has better scalability and can deplete the ad budgets more smoothly throughout the horizon, which is highly desirable for the online advertising business in practice. Finally, our proposed model and algorithm help substantially improve the fairness of ad allocation for an online e-commerce platform without significantly compromising efficiency. This paper was accepted by Jeannette Song, operations management. Funding: Y. Rong is supported by the National Natural Science Foundation of China [Grants 72025201, 72331006, and 72221001]. R. Zhang is grateful for the financial support from the Hong Kong Research Grants Council General Research Fund [Grants 14502722 and 14504123] and the National Natural Science Foundation of China [Grants 72293560 and 72293565]. H. Zheng is supported by the National Natural Science Foundation of China [Grants 72231003, 72325003, and 72221001]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.04091 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花花发布了新的文献求助10
1秒前
十七。完成签到,获得积分10
1秒前
3秒前
4秒前
Orange应助LCFXR采纳,获得10
4秒前
mm完成签到,获得积分10
8秒前
ding应助omega采纳,获得10
8秒前
Hang发布了新的文献求助30
8秒前
cdercder应助jj采纳,获得10
8秒前
渤海少年发布了新的文献求助10
9秒前
你柿不柿莓柿完成签到,获得积分10
10秒前
花花完成签到,获得积分10
11秒前
塇塇完成签到,获得积分10
12秒前
14秒前
998完成签到,获得积分10
17秒前
大模型应助阿布采纳,获得10
18秒前
18秒前
科研狗发布了新的文献求助10
19秒前
19秒前
汉堡包应助渤海少年采纳,获得10
20秒前
感动城发布了新的文献求助10
20秒前
扶溪筠完成签到,获得积分10
21秒前
998发布了新的文献求助10
22秒前
23秒前
小章完成签到,获得积分10
23秒前
隐形曼青应助多肉丸子采纳,获得10
23秒前
23秒前
蕾蕾完成签到 ,获得积分10
24秒前
25秒前
希望天下0贩的0应助wangyang采纳,获得10
25秒前
时来运转完成签到 ,获得积分10
26秒前
任驰骋发布了新的文献求助10
26秒前
FBI911应助haoliu采纳,获得10
27秒前
jjz发布了新的文献求助10
28秒前
眯眯眼的海完成签到,获得积分10
29秒前
29秒前
Sarah完成签到,获得积分10
29秒前
光亮夏兰发布了新的文献求助10
30秒前
31秒前
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734603
求助须知:如何正确求助?哪些是违规求助? 3278545
关于积分的说明 10009929
捐赠科研通 2995186
什么是DOI,文献DOI怎么找? 1643254
邀请新用户注册赠送积分活动 781019
科研通“疑难数据库(出版商)”最低求助积分说明 749199