亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Online Advertisement Allocation Under Customer Choices and Algorithmic Fairness

广告 计算机科学 在线广告 运筹学 业务 微观经济学 营销 经济 互联网 万维网 数学
作者
X P Li,Ying Rong,Renyu Zhang,Huan Zheng
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:17
标识
DOI:10.1287/mnsc.2021.04091
摘要

Advertising is a crucial revenue source for e-commerce platforms and a vital online marketing tool for their sellers. In this paper, we explore dynamic ad allocation with limited slots upon each customer’s arrival for an e-commerce platform, where customers follow a choice model when clicking the ads. Motivated by the recent advocacy for the algorithmic fairness of online ad delivery, we adjust the value from advertising by a general fairness metric evaluated with the click-throughs of different ads and customer types. The original online ad-allocation problem is intractable, so we propose a novel stochastic program framework (called two-stage target-debt) that first decides the click-through targets and then devises an ad-allocation policy to satisfy these targets in the second stage. We show the asymptotic equivalence between the original problem, the relaxed click-through target optimization, and the fluid-approximation ( Fluid ) convex program. We also design a debt-weighted offer-set algorithm and demonstrate that, as long as the problem size scales to infinity, this algorithm is (asymptotically) optimal under the optimal first-stage click-through target. Compared with the Fluid heuristic and its resolving variants, our approach has better scalability and can deplete the ad budgets more smoothly throughout the horizon, which is highly desirable for the online advertising business in practice. Finally, our proposed model and algorithm help substantially improve the fairness of ad allocation for an online e-commerce platform without significantly compromising efficiency. This paper was accepted by Jeannette Song, operations management. Funding: Y. Rong is supported by the National Natural Science Foundation of China [Grants 72025201, 72331006, and 72221001]. R. Zhang is grateful for the financial support from the Hong Kong Research Grants Council General Research Fund [Grants 14502722 and 14504123] and the National Natural Science Foundation of China [Grants 72293560 and 72293565]. H. Zheng is supported by the National Natural Science Foundation of China [Grants 72231003, 72325003, and 72221001]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.04091 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助谈理想采纳,获得10
9秒前
zqq完成签到,获得积分0
18秒前
19秒前
31秒前
老农民做科研完成签到 ,获得积分10
34秒前
青又完成签到,获得积分10
34秒前
movoandy应助科研通管家采纳,获得10
1分钟前
1分钟前
直率金连完成签到,获得积分10
1分钟前
1分钟前
Shandongdaxiu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
Tingtingzhang发布了新的文献求助10
1分钟前
1分钟前
Uniibooy发布了新的文献求助10
1分钟前
mc小胖羊发布了新的文献求助10
2分钟前
2分钟前
Tingtingzhang完成签到,获得积分10
2分钟前
2分钟前
caca完成签到,获得积分0
2分钟前
2分钟前
2分钟前
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
玉潇发布了新的文献求助10
3分钟前
3分钟前
3分钟前
朴素千亦完成签到 ,获得积分10
3分钟前
WhiteT发布了新的文献求助10
3分钟前
虚拟的元风完成签到 ,获得积分10
3分钟前
小马甲应助yunshui采纳,获得10
3分钟前
林子鸿完成签到 ,获得积分10
3分钟前
昭荃完成签到 ,获得积分0
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418269
求助须知:如何正确求助?哪些是违规求助? 4534001
关于积分的说明 14142950
捐赠科研通 4450267
什么是DOI,文献DOI怎么找? 2441139
邀请新用户注册赠送积分活动 1432887
关于科研通互助平台的介绍 1410210