亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Online Advertisement Allocation Under Customer Choices and Algorithmic Fairness

广告 计算机科学 在线广告 运筹学 业务 微观经济学 营销 经济 互联网 万维网 数学
作者
X P Li,Ying Rong,Renyu Zhang,Huan Zheng
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:18
标识
DOI:10.1287/mnsc.2021.04091
摘要

Advertising is a crucial revenue source for e-commerce platforms and a vital online marketing tool for their sellers. In this paper, we explore dynamic ad allocation with limited slots upon each customer’s arrival for an e-commerce platform, where customers follow a choice model when clicking the ads. Motivated by the recent advocacy for the algorithmic fairness of online ad delivery, we adjust the value from advertising by a general fairness metric evaluated with the click-throughs of different ads and customer types. The original online ad-allocation problem is intractable, so we propose a novel stochastic program framework (called two-stage target-debt) that first decides the click-through targets and then devises an ad-allocation policy to satisfy these targets in the second stage. We show the asymptotic equivalence between the original problem, the relaxed click-through target optimization, and the fluid-approximation ( Fluid ) convex program. We also design a debt-weighted offer-set algorithm and demonstrate that, as long as the problem size scales to infinity, this algorithm is (asymptotically) optimal under the optimal first-stage click-through target. Compared with the Fluid heuristic and its resolving variants, our approach has better scalability and can deplete the ad budgets more smoothly throughout the horizon, which is highly desirable for the online advertising business in practice. Finally, our proposed model and algorithm help substantially improve the fairness of ad allocation for an online e-commerce platform without significantly compromising efficiency. This paper was accepted by Jeannette Song, operations management. Funding: Y. Rong is supported by the National Natural Science Foundation of China [Grants 72025201, 72331006, and 72221001]. R. Zhang is grateful for the financial support from the Hong Kong Research Grants Council General Research Fund [Grants 14502722 and 14504123] and the National Natural Science Foundation of China [Grants 72293560 and 72293565]. H. Zheng is supported by the National Natural Science Foundation of China [Grants 72231003, 72325003, and 72221001]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.04091 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助zhl采纳,获得10
14秒前
香蕉觅云应助读书的时候采纳,获得10
21秒前
24秒前
哇呀呀完成签到 ,获得积分10
27秒前
bkagyin应助T1aNer299采纳,获得10
32秒前
成就的笑南完成签到 ,获得积分0
42秒前
42秒前
45秒前
45秒前
45秒前
45秒前
morena应助科研通管家采纳,获得30
45秒前
Owen应助科研通管家采纳,获得10
45秒前
自信号厂完成签到 ,获得积分0
45秒前
46秒前
49秒前
anders完成签到 ,获得积分10
1分钟前
abc应助任性学姐采纳,获得10
1分钟前
1分钟前
852应助yu采纳,获得10
1分钟前
超级灰狼完成签到 ,获得积分10
1分钟前
abc应助安静含卉采纳,获得10
1分钟前
abc应助安静含卉采纳,获得10
1分钟前
SciGPT应助安静含卉采纳,获得10
1分钟前
FashionBoy应助读书的时候采纳,获得30
1分钟前
1分钟前
1分钟前
斯文梦寒完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
科研通AI6.1应助icelatte采纳,获得10
2分钟前
2分钟前
zqq完成签到,获得积分0
2分钟前
2分钟前
pray发布了新的文献求助10
2分钟前
Jasper应助默默采纳,获得10
2分钟前
2分钟前
小吴发布了新的文献求助20
2分钟前
乐乐应助读书的时候采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739284
求助须知:如何正确求助?哪些是违规求助? 5385145
关于积分的说明 15339593
捐赠科研通 4881881
什么是DOI,文献DOI怎么找? 2623999
邀请新用户注册赠送积分活动 1572683
关于科研通互助平台的介绍 1529459