Online Advertisement Allocation Under Customer Choices and Algorithmic Fairness

广告 计算机科学 在线广告 运筹学 业务 微观经济学 营销 经济 互联网 万维网 数学
作者
X P Li,Ying Rong,Renyu Zhang,Huan Zheng
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:12
标识
DOI:10.1287/mnsc.2021.04091
摘要

Advertising is a crucial revenue source for e-commerce platforms and a vital online marketing tool for their sellers. In this paper, we explore dynamic ad allocation with limited slots upon each customer’s arrival for an e-commerce platform, where customers follow a choice model when clicking the ads. Motivated by the recent advocacy for the algorithmic fairness of online ad delivery, we adjust the value from advertising by a general fairness metric evaluated with the click-throughs of different ads and customer types. The original online ad-allocation problem is intractable, so we propose a novel stochastic program framework (called two-stage target-debt) that first decides the click-through targets and then devises an ad-allocation policy to satisfy these targets in the second stage. We show the asymptotic equivalence between the original problem, the relaxed click-through target optimization, and the fluid-approximation ( Fluid ) convex program. We also design a debt-weighted offer-set algorithm and demonstrate that, as long as the problem size scales to infinity, this algorithm is (asymptotically) optimal under the optimal first-stage click-through target. Compared with the Fluid heuristic and its resolving variants, our approach has better scalability and can deplete the ad budgets more smoothly throughout the horizon, which is highly desirable for the online advertising business in practice. Finally, our proposed model and algorithm help substantially improve the fairness of ad allocation for an online e-commerce platform without significantly compromising efficiency. This paper was accepted by Jeannette Song, operations management. Funding: Y. Rong is supported by the National Natural Science Foundation of China [Grants 72025201, 72331006, and 72221001]. R. Zhang is grateful for the financial support from the Hong Kong Research Grants Council General Research Fund [Grants 14502722 and 14504123] and the National Natural Science Foundation of China [Grants 72293560 and 72293565]. H. Zheng is supported by the National Natural Science Foundation of China [Grants 72231003, 72325003, and 72221001]. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2021.04091 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
why完成签到,获得积分10
2秒前
2秒前
6秒前
洁净斑马发布了新的文献求助10
7秒前
菲菲完成签到 ,获得积分10
7秒前
偶吼吼完成签到,获得积分10
7秒前
Xu_W卜完成签到,获得积分10
7秒前
斯文钢笔完成签到 ,获得积分10
8秒前
敏敏完成签到 ,获得积分10
9秒前
ha完成签到 ,获得积分10
9秒前
畅快代亦完成签到,获得积分10
10秒前
10秒前
evilbatuu完成签到,获得积分10
11秒前
等待的代容完成签到,获得积分10
12秒前
丰富的大地完成签到,获得积分10
14秒前
中华牌老阿姨完成签到,获得积分0
15秒前
大Doctor陈发布了新的文献求助10
16秒前
劳达完成签到,获得积分10
17秒前
自然秋柳完成签到 ,获得积分10
17秒前
shinen完成签到,获得积分10
18秒前
poplar完成签到,获得积分10
19秒前
短巷完成签到 ,获得积分10
20秒前
忧伤的二锅头完成签到 ,获得积分10
20秒前
研友_ZzrWKZ完成签到 ,获得积分10
22秒前
狼来了aas完成签到,获得积分10
22秒前
大Doctor陈发布了新的文献求助10
23秒前
dlut0407完成签到,获得积分0
23秒前
鸢尾完成签到,获得积分10
24秒前
111111完成签到,获得积分10
25秒前
晚星完成签到,获得积分10
26秒前
kourosz完成签到,获得积分10
27秒前
细心的代天完成签到 ,获得积分10
31秒前
王十二完成签到 ,获得积分10
32秒前
kidd瑞完成签到,获得积分10
34秒前
qqdm完成签到 ,获得积分10
34秒前
跳跃完成签到,获得积分10
35秒前
缓慢白曼完成签到 ,获得积分10
37秒前
烂漫的煎饼完成签到 ,获得积分10
38秒前
波波波波波6764完成签到 ,获得积分10
39秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015