亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bon-APT: Detection, Attribution, and Explainability of APT Malware Using Temporal Segmentation of API Calls

恶意软件 计算机科学 归属 透明度(行为) 分割 透视图(图形) 可靠性(半导体) 人工智能 国家(计算机科学) 机器学习 数据科学 计算机安全 心理学 社会心理学 功率(物理) 物理 算法 量子力学
作者
Gil Shenderovitz,Nir Nissim
出处
期刊:Computers & Security [Elsevier]
卷期号:142: 103862-103862 被引量:4
标识
DOI:10.1016/j.cose.2024.103862
摘要

Advanced Persistent Threats (APTs) are highly sophisticated cyberattacks that are aimed at achieving strategic goals and are usually backed by a well-funded entity. In this paper, we tackle the challenges of detecting and attributing APTs by proposing Bon-APT, a temporal learning method that analyzes and segment the occurrences of API calls invoked during the dynamic analysis of the examined PE. Those segments can be used to profile the temporal behavior of an APT, provide insights into its modus operandi, and induce an accurate machine-learning based model for the detection and attribution of APTs. Moreover, Bon-APT provides a human comprehensible explainability regarding the relations among segments as well as the behavior of the APT in each of them. This not only improves transparency and reliability from a human expert perspective, but it can also enrich the security experts with new knowledge regarding APTs' behavior. To evaluate Bon-APT, we built a unique collection of 12,655 APTs, belonging to 188 different cyber-groups and 17 different nations, which, to the best of our knowledge, is the largest collection of its kind. We conducted four experiments to evaluate the proposed method and compared its performance to the performance of state-of-the-art methods on the tasks of APT detection and authorship attribution (for both group and nation). Bon-APT achieved promising results in each of the tasks while outperforming the state-of-the-art methods. Bon-APT also provides a simple and concise explanation regarding its decisions and the APT behavior, as well as an easy, straightforward visual and quantitative behavioral comparison.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无言完成签到 ,获得积分10
4秒前
19秒前
隐形问萍发布了新的文献求助10
23秒前
赘婿应助爱听歌笑寒采纳,获得10
28秒前
33秒前
34秒前
John完成签到 ,获得积分10
37秒前
39秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
希望天下0贩的0应助jyy采纳,获得10
58秒前
1分钟前
1分钟前
月墨雪发布了新的文献求助10
1分钟前
浮云完成签到,获得积分10
1分钟前
小脚丫完成签到 ,获得积分10
1分钟前
烟花应助繁荣的土豆采纳,获得10
1分钟前
tarako发布了新的文献求助30
2分钟前
子平完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
Lucas应助爱听歌笑寒采纳,获得10
2分钟前
2分钟前
jyy发布了新的文献求助10
2分钟前
2分钟前
2分钟前
ldysaber完成签到,获得积分0
2分钟前
2分钟前
繁荣的土豆完成签到,获得积分20
3分钟前
3分钟前
劳健龙完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
5分钟前
十七应助cxy采纳,获得10
5分钟前
CodeCraft应助爱听歌笑寒采纳,获得10
5分钟前
5分钟前
5分钟前
NexusExplorer应助xx采纳,获得10
6分钟前
6分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3393035
求助须知:如何正确求助?哪些是违规求助? 3003391
关于积分的说明 8809133
捐赠科研通 2690184
什么是DOI,文献DOI怎么找? 1473496
科研通“疑难数据库(出版商)”最低求助积分说明 681603
邀请新用户注册赠送积分活动 674534