A multi-omics analysis-based model to predict the prognosis of low-grade gliomas

基因 ATRX公司 DNA甲基化 生物 比例危险模型 外显子组 肿瘤科 甲基化 生存分析 DNA测序 候选基因 外显子组测序 计算生物学 生物信息学 遗传学 内科学 表型 医学 突变 基因表达
作者
Zhijie Du,Yue-Hui Jiang,Yueling Yang,Xiaoyu Kang,Jing Yan,Baorui Liu,Mi Yang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-58434-8
摘要

Abstract Lower-grade gliomas (LGGs) exhibit highly variable clinical behaviors, while classic histology characteristics cannot accurately reflect the authentic biological behaviors, clinical outcomes, and prognosis of LGGs. In this study, we carried out analyses of whole exome sequencing, RNA sequencing and DNA methylation in primary vs. recurrent LGG samples, and also combined the multi-omics data to construct a prognostic prediction model. TCGA-LGG dataset was searched for LGG samples. 523 samples were used for whole exome sequencing analysis, 532 for transcriptional analysis, and 529 for DNA methylation analysis. LASSO regression was used to screen genes with significant association with LGG survival from the frequently mutated genes, differentially expressed genes, and differentially methylated genes, whereby a prediction model for prognosis of LGG was further constructed and validated. The most frequently mutated diver genes in LGGs were IDH1 (77%), TP53 (48%), ATRX (37%), etc. Top significantly up-regulated genes were C6orf15, DAO, MEOX2, etc., and top significantly down-regulated genes were DMBX1, GPR50, HMX2, etc. 2077 genes were more and 299 were less methylated in recurrent vs. primary LGG samples. Thirty-nine genes from the above analysis were included to establish a prediction model of survival, which showed that the high-score group had a very significantly shorter survival than the low-score group in both training and testing sets. ROC analysis showed that AUC was 0.817 for the training set and 0.819 for the testing set. This study will be beneficial to accurately predict the survival of LGGs to identify patients with poor prognosis to take specific treatment as early, which will help improve the treatment outcomes and prognosis of LGG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龙慧琳完成签到,获得积分10
刚刚
林少玮发布了新的文献求助10
刚刚
小白完成签到,获得积分10
刚刚
CipherSage应助杭谷波采纳,获得10
刚刚
乐观秋荷应助艾東平采纳,获得10
1秒前
文迪完成签到,获得积分10
1秒前
1秒前
Madge发布了新的文献求助10
2秒前
小浆果关注了科研通微信公众号
2秒前
捌柒陆发布了新的文献求助10
3秒前
3秒前
yzl科研爱我完成签到,获得积分10
3秒前
清脆凡阳发布了新的文献求助10
3秒前
路过地球发布了新的文献求助10
4秒前
言庭兰玉完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
AI_Medical完成签到,获得积分10
6秒前
guoguo关注了科研通微信公众号
7秒前
Blue_Eyes发布了新的文献求助10
7秒前
Bazinga发布了新的文献求助10
7秒前
黄bb完成签到,获得积分10
7秒前
李爱国应助Hiccupsssss采纳,获得10
7秒前
7秒前
哆啦十七应助导师求放过采纳,获得10
8秒前
Howes91完成签到,获得积分10
8秒前
8秒前
小二郎应助忆仙姿采纳,获得10
8秒前
香蕉觅云应助贾千兰采纳,获得10
8秒前
8秒前
ysq发布了新的文献求助10
8秒前
8秒前
望天发布了新的文献求助10
8秒前
宁人发布了新的文献求助10
9秒前
落叶的季节完成签到,获得积分10
9秒前
10秒前
bkagyin应助妙aaa采纳,获得10
10秒前
Zhang发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884