亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A multi-omics analysis-based model to predict the prognosis of low-grade gliomas

基因 ATRX公司 DNA甲基化 生物 比例危险模型 外显子组 肿瘤科 甲基化 生存分析 DNA测序 候选基因 外显子组测序 计算生物学 生物信息学 遗传学 内科学 表型 医学 突变 基因表达
作者
Zhijie Du,Yue-Hui Jiang,Yueling Yang,Xiaoyu Kang,Jing Yan,Baorui Liu,Mi Yang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-58434-8
摘要

Abstract Lower-grade gliomas (LGGs) exhibit highly variable clinical behaviors, while classic histology characteristics cannot accurately reflect the authentic biological behaviors, clinical outcomes, and prognosis of LGGs. In this study, we carried out analyses of whole exome sequencing, RNA sequencing and DNA methylation in primary vs. recurrent LGG samples, and also combined the multi-omics data to construct a prognostic prediction model. TCGA-LGG dataset was searched for LGG samples. 523 samples were used for whole exome sequencing analysis, 532 for transcriptional analysis, and 529 for DNA methylation analysis. LASSO regression was used to screen genes with significant association with LGG survival from the frequently mutated genes, differentially expressed genes, and differentially methylated genes, whereby a prediction model for prognosis of LGG was further constructed and validated. The most frequently mutated diver genes in LGGs were IDH1 (77%), TP53 (48%), ATRX (37%), etc. Top significantly up-regulated genes were C6orf15, DAO, MEOX2, etc., and top significantly down-regulated genes were DMBX1, GPR50, HMX2, etc. 2077 genes were more and 299 were less methylated in recurrent vs. primary LGG samples. Thirty-nine genes from the above analysis were included to establish a prediction model of survival, which showed that the high-score group had a very significantly shorter survival than the low-score group in both training and testing sets. ROC analysis showed that AUC was 0.817 for the training set and 0.819 for the testing set. This study will be beneficial to accurately predict the survival of LGGs to identify patients with poor prognosis to take specific treatment as early, which will help improve the treatment outcomes and prognosis of LGG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Bob完成签到,获得积分10
7秒前
胡瓜拌凉皮完成签到,获得积分10
9秒前
慕青应助辣味锅包肉采纳,获得10
9秒前
10秒前
浮游应助辣味锅包肉采纳,获得10
12秒前
yangshu发布了新的文献求助10
15秒前
26秒前
Kz发布了新的文献求助10
33秒前
华仔应助Kz采纳,获得10
47秒前
kklkimo完成签到,获得积分10
53秒前
科研cc应助唐泽雪穗采纳,获得60
1分钟前
1分钟前
唐泽雪穗发布了新的文献求助60
1分钟前
童严柯完成签到,获得积分10
1分钟前
zy997987876应助童严柯采纳,获得20
1分钟前
zyjsunye完成签到 ,获得积分10
1分钟前
1分钟前
rio完成签到 ,获得积分10
2分钟前
2分钟前
浮游应助yangshu采纳,获得10
2分钟前
英俊的铭应助yangshu采纳,获得10
2分钟前
MchemG举报哈哈哈求助涉嫌违规
2分钟前
2分钟前
yangshu完成签到,获得积分10
2分钟前
XingRang发布了新的文献求助10
2分钟前
科研cc应助唐泽雪穗采纳,获得100
2分钟前
2分钟前
唐泽雪穗发布了新的文献求助100
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
帅气的安柏完成签到,获得积分10
3分钟前
科研cc应助唐泽雪穗采纳,获得40
4分钟前
科研cc应助唐泽雪穗采纳,获得80
4分钟前
科研cc应助唐泽雪穗采纳,获得80
4分钟前
科研cc应助唐泽雪穗采纳,获得70
4分钟前
4分钟前
4分钟前
4分钟前
唐泽雪穗发布了新的文献求助70
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078338
求助须知:如何正确求助?哪些是违规求助? 4297112
关于积分的说明 13387869
捐赠科研通 4119800
什么是DOI,文献DOI怎么找? 2256288
邀请新用户注册赠送积分活动 1260569
关于科研通互助平台的介绍 1194176