已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A multi-omics analysis-based model to predict the prognosis of low-grade gliomas

基因 ATRX公司 DNA甲基化 生物 比例危险模型 外显子组 肿瘤科 甲基化 生存分析 DNA测序 候选基因 外显子组测序 计算生物学 生物信息学 遗传学 内科学 表型 医学 突变 基因表达
作者
Zhijie Du,Yue-Hui Jiang,Yueling Yang,Xiaoyu Kang,Jing Yan,Baorui Liu,Mi Yang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-58434-8
摘要

Abstract Lower-grade gliomas (LGGs) exhibit highly variable clinical behaviors, while classic histology characteristics cannot accurately reflect the authentic biological behaviors, clinical outcomes, and prognosis of LGGs. In this study, we carried out analyses of whole exome sequencing, RNA sequencing and DNA methylation in primary vs. recurrent LGG samples, and also combined the multi-omics data to construct a prognostic prediction model. TCGA-LGG dataset was searched for LGG samples. 523 samples were used for whole exome sequencing analysis, 532 for transcriptional analysis, and 529 for DNA methylation analysis. LASSO regression was used to screen genes with significant association with LGG survival from the frequently mutated genes, differentially expressed genes, and differentially methylated genes, whereby a prediction model for prognosis of LGG was further constructed and validated. The most frequently mutated diver genes in LGGs were IDH1 (77%), TP53 (48%), ATRX (37%), etc. Top significantly up-regulated genes were C6orf15, DAO, MEOX2, etc., and top significantly down-regulated genes were DMBX1, GPR50, HMX2, etc. 2077 genes were more and 299 were less methylated in recurrent vs. primary LGG samples. Thirty-nine genes from the above analysis were included to establish a prediction model of survival, which showed that the high-score group had a very significantly shorter survival than the low-score group in both training and testing sets. ROC analysis showed that AUC was 0.817 for the training set and 0.819 for the testing set. This study will be beneficial to accurately predict the survival of LGGs to identify patients with poor prognosis to take specific treatment as early, which will help improve the treatment outcomes and prognosis of LGG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
李琼琼发布了新的文献求助10
2秒前
寇博翔发布了新的文献求助10
3秒前
一吨好运完成签到,获得积分20
3秒前
JPH1990应助清风_breeze采纳,获得10
3秒前
科研通AI2S应助無期采纳,获得10
4秒前
5秒前
大大完成签到,获得积分10
5秒前
YaoHui发布了新的文献求助10
8秒前
lyw发布了新的文献求助10
8秒前
科研通AI6应助寇博翔采纳,获得10
11秒前
yumiao发布了新的文献求助10
12秒前
华仔应助vayne采纳,获得10
12秒前
dajiejie发布了新的文献求助10
12秒前
nenoaowu发布了新的文献求助10
13秒前
15秒前
17秒前
bkagyin应助nenoaowu采纳,获得10
17秒前
ZJX应助MyAI采纳,获得10
19秒前
19秒前
自然的铅笔完成签到 ,获得积分10
20秒前
yyyyyyypxxxx发布了新的文献求助30
21秒前
Sunbird完成签到,获得积分10
22秒前
毕蓝血完成签到 ,获得积分10
23秒前
23秒前
善良的花菜完成签到 ,获得积分10
23秒前
25秒前
王博林发布了新的文献求助30
26秒前
葡萄糖完成签到 ,获得积分10
26秒前
文静的海发布了新的文献求助10
29秒前
隐形曼青应助一吨好运采纳,获得10
30秒前
cccccgggmmm发布了新的文献求助30
31秒前
sc完成签到,获得积分20
32秒前
粗犷的夏槐完成签到 ,获得积分10
32秒前
33秒前
领导范儿应助高高采纳,获得10
34秒前
johnhush完成签到 ,获得积分10
34秒前
Lucas应助小巧尔蓝采纳,获得20
35秒前
英俊的铭应助李琼琼采纳,获得10
35秒前
科研小白关注了科研通微信公众号
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252897
求助须知:如何正确求助?哪些是违规求助? 4416496
关于积分的说明 13749852
捐赠科研通 4288649
什么是DOI,文献DOI怎么找? 2353022
邀请新用户注册赠送积分活动 1349787
关于科研通互助平台的介绍 1309434