A multi-omics analysis-based model to predict the prognosis of low-grade gliomas

基因 ATRX公司 DNA甲基化 生物 比例危险模型 外显子组 肿瘤科 甲基化 生存分析 DNA测序 候选基因 外显子组测序 计算生物学 生物信息学 遗传学 内科学 表型 医学 突变 基因表达
作者
Zhijie Du,Yue-Hui Jiang,Yueling Yang,Xiaoyu Kang,Jing Yan,Baorui Liu,Mi Yang
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-58434-8
摘要

Abstract Lower-grade gliomas (LGGs) exhibit highly variable clinical behaviors, while classic histology characteristics cannot accurately reflect the authentic biological behaviors, clinical outcomes, and prognosis of LGGs. In this study, we carried out analyses of whole exome sequencing, RNA sequencing and DNA methylation in primary vs. recurrent LGG samples, and also combined the multi-omics data to construct a prognostic prediction model. TCGA-LGG dataset was searched for LGG samples. 523 samples were used for whole exome sequencing analysis, 532 for transcriptional analysis, and 529 for DNA methylation analysis. LASSO regression was used to screen genes with significant association with LGG survival from the frequently mutated genes, differentially expressed genes, and differentially methylated genes, whereby a prediction model for prognosis of LGG was further constructed and validated. The most frequently mutated diver genes in LGGs were IDH1 (77%), TP53 (48%), ATRX (37%), etc. Top significantly up-regulated genes were C6orf15, DAO, MEOX2, etc., and top significantly down-regulated genes were DMBX1, GPR50, HMX2, etc. 2077 genes were more and 299 were less methylated in recurrent vs. primary LGG samples. Thirty-nine genes from the above analysis were included to establish a prediction model of survival, which showed that the high-score group had a very significantly shorter survival than the low-score group in both training and testing sets. ROC analysis showed that AUC was 0.817 for the training set and 0.819 for the testing set. This study will be beneficial to accurately predict the survival of LGGs to identify patients with poor prognosis to take specific treatment as early, which will help improve the treatment outcomes and prognosis of LGG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
时倾完成签到,获得积分20
1秒前
poplar完成签到,获得积分10
1秒前
开放又亦发布了新的文献求助10
1秒前
1秒前
2秒前
勾陈一完成签到,获得积分10
2秒前
彭于晏应助蛋黄派采纳,获得10
3秒前
quan发布了新的文献求助10
3秒前
4秒前
大个应助Serenity采纳,获得10
4秒前
林黛玉发布了新的文献求助10
4秒前
4秒前
叮叮当当完成签到,获得积分10
5秒前
dtjvb发布了新的文献求助10
5秒前
鱿鱼完成签到,获得积分10
5秒前
脑洞疼应助Rencal采纳,获得10
6秒前
6秒前
淡定的忆山完成签到 ,获得积分10
7秒前
7秒前
Hello应助缥缈的闭月采纳,获得30
8秒前
8秒前
DDDD源发布了新的文献求助10
8秒前
Jasper应助nron采纳,获得10
8秒前
JamesPei应助hdbys采纳,获得10
9秒前
9秒前
10秒前
绕地球3圈发布了新的文献求助10
10秒前
newman完成签到,获得积分10
10秒前
10发布了新的文献求助10
10秒前
小怪兽发布了新的文献求助10
11秒前
雾失楼台完成签到,获得积分10
11秒前
苏杉杉发布了新的文献求助10
12秒前
BINGBING发布了新的文献求助10
12秒前
可爱芷容完成签到,获得积分10
14秒前
落雁发布了新的文献求助10
14秒前
gsgg完成签到 ,获得积分10
14秒前
14秒前
15秒前
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650