A multi-omics analysis-based model to predict the prognosis of low-grade gliomas

基因 ATRX公司 DNA甲基化 生物 比例危险模型 外显子组 肿瘤科 甲基化 生存分析 DNA测序 候选基因 外显子组测序 计算生物学 生物信息学 遗传学 内科学 表型 医学 突变 基因表达
作者
Zhijie Du,Yue-Hui Jiang,Yueling Yang,Xiaoyu Kang,Jing Yan,Baorui Liu,Mi Yang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-58434-8
摘要

Abstract Lower-grade gliomas (LGGs) exhibit highly variable clinical behaviors, while classic histology characteristics cannot accurately reflect the authentic biological behaviors, clinical outcomes, and prognosis of LGGs. In this study, we carried out analyses of whole exome sequencing, RNA sequencing and DNA methylation in primary vs. recurrent LGG samples, and also combined the multi-omics data to construct a prognostic prediction model. TCGA-LGG dataset was searched for LGG samples. 523 samples were used for whole exome sequencing analysis, 532 for transcriptional analysis, and 529 for DNA methylation analysis. LASSO regression was used to screen genes with significant association with LGG survival from the frequently mutated genes, differentially expressed genes, and differentially methylated genes, whereby a prediction model for prognosis of LGG was further constructed and validated. The most frequently mutated diver genes in LGGs were IDH1 (77%), TP53 (48%), ATRX (37%), etc. Top significantly up-regulated genes were C6orf15, DAO, MEOX2, etc., and top significantly down-regulated genes were DMBX1, GPR50, HMX2, etc. 2077 genes were more and 299 were less methylated in recurrent vs. primary LGG samples. Thirty-nine genes from the above analysis were included to establish a prediction model of survival, which showed that the high-score group had a very significantly shorter survival than the low-score group in both training and testing sets. ROC analysis showed that AUC was 0.817 for the training set and 0.819 for the testing set. This study will be beneficial to accurately predict the survival of LGGs to identify patients with poor prognosis to take specific treatment as early, which will help improve the treatment outcomes and prognosis of LGG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
麻薯关注了科研通微信公众号
刚刚
刚刚
1秒前
共享精神应助刘小乐采纳,获得10
1秒前
3秒前
肖雪依发布了新的文献求助10
3秒前
3秒前
3秒前
竹子完成签到,获得积分10
4秒前
屾哥发布了新的文献求助10
4秒前
5秒前
5秒前
vvvvvvld发布了新的文献求助10
6秒前
852应助大梦先生采纳,获得10
6秒前
李爱国应助开心的又夏采纳,获得10
7秒前
Lyndonz7u完成签到,获得积分10
8秒前
666完成签到,获得积分10
9秒前
哈哈哈哈发布了新的文献求助30
9秒前
随心随意发布了新的文献求助10
10秒前
azure发布了新的文献求助10
10秒前
斯文败类应助YY采纳,获得30
11秒前
11秒前
12秒前
共享精神应助Wtt采纳,获得20
13秒前
开心的又夏完成签到,获得积分20
15秒前
15秒前
15秒前
16秒前
希望天下0贩的0应助紫心采纳,获得10
16秒前
cbf发布了新的文献求助10
16秒前
可爱的函函应助幸福鑫鹏采纳,获得10
17秒前
18秒前
刘小乐发布了新的文献求助10
18秒前
ding应助刘梦杰采纳,获得10
18秒前
19秒前
uuu完成签到,获得积分10
20秒前
20秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170879
求助须知:如何正确求助?哪些是违规求助? 2821852
关于积分的说明 7936730
捐赠科研通 2482297
什么是DOI,文献DOI怎么找? 1322448
科研通“疑难数据库(出版商)”最低求助积分说明 633639
版权声明 602608