A multi-omics analysis-based model to predict the prognosis of low-grade gliomas

基因 ATRX公司 DNA甲基化 生物 比例危险模型 外显子组 肿瘤科 甲基化 生存分析 DNA测序 候选基因 外显子组测序 计算生物学 生物信息学 遗传学 内科学 表型 医学 突变 基因表达
作者
Zhijie Du,Yue-Hui Jiang,Yueling Yang,Xiaoyu Kang,Jing Yan,Baorui Liu,Mi Yang
出处
期刊:Scientific Reports [Springer Nature]
卷期号:14 (1) 被引量:1
标识
DOI:10.1038/s41598-024-58434-8
摘要

Abstract Lower-grade gliomas (LGGs) exhibit highly variable clinical behaviors, while classic histology characteristics cannot accurately reflect the authentic biological behaviors, clinical outcomes, and prognosis of LGGs. In this study, we carried out analyses of whole exome sequencing, RNA sequencing and DNA methylation in primary vs. recurrent LGG samples, and also combined the multi-omics data to construct a prognostic prediction model. TCGA-LGG dataset was searched for LGG samples. 523 samples were used for whole exome sequencing analysis, 532 for transcriptional analysis, and 529 for DNA methylation analysis. LASSO regression was used to screen genes with significant association with LGG survival from the frequently mutated genes, differentially expressed genes, and differentially methylated genes, whereby a prediction model for prognosis of LGG was further constructed and validated. The most frequently mutated diver genes in LGGs were IDH1 (77%), TP53 (48%), ATRX (37%), etc. Top significantly up-regulated genes were C6orf15, DAO, MEOX2, etc., and top significantly down-regulated genes were DMBX1, GPR50, HMX2, etc. 2077 genes were more and 299 were less methylated in recurrent vs. primary LGG samples. Thirty-nine genes from the above analysis were included to establish a prediction model of survival, which showed that the high-score group had a very significantly shorter survival than the low-score group in both training and testing sets. ROC analysis showed that AUC was 0.817 for the training set and 0.819 for the testing set. This study will be beneficial to accurately predict the survival of LGGs to identify patients with poor prognosis to take specific treatment as early, which will help improve the treatment outcomes and prognosis of LGG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhonghbush发布了新的文献求助10
刚刚
reck发布了新的文献求助10
刚刚
刚刚
刚刚
kimcandy完成签到,获得积分10
刚刚
华仔应助任品贤采纳,获得10
1秒前
无花果应助急雪回风采纳,获得10
1秒前
3秒前
曾经的灵完成签到,获得积分20
3秒前
bkagyin应助小宇采纳,获得10
3秒前
许之北完成签到 ,获得积分10
3秒前
3秒前
船舵发布了新的文献求助10
3秒前
gaos完成签到,获得积分10
4秒前
念念发布了新的文献求助10
4秒前
An_mie完成签到,获得积分10
4秒前
4秒前
4秒前
Arabella完成签到,获得积分10
5秒前
HEIKU应助追梦人采纳,获得10
5秒前
5秒前
小T儿发布了新的文献求助10
5秒前
852应助woxiangbiye采纳,获得10
5秒前
飞羽完成签到,获得积分10
6秒前
Owen应助cherry采纳,获得10
6秒前
坚定的老六完成签到,获得积分10
6秒前
协和_子鱼完成签到,获得积分0
6秒前
7秒前
Hyde完成签到,获得积分10
8秒前
小南孩完成签到,获得积分10
8秒前
8秒前
9秒前
研友_VZG7GZ应助keyancui采纳,获得10
9秒前
康康完成签到 ,获得积分10
10秒前
英姑应助毕业就好采纳,获得10
10秒前
虚心的迎荷完成签到,获得积分10
10秒前
脑洞疼应助少侠不是菜鸟采纳,获得10
10秒前
10秒前
祝雲完成签到,获得积分10
10秒前
新的心跳发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672