Exploring Radiomics Features Based on H&E Images as Potential Biomarkers for Evaluating Muscle Atrophy: A Preliminary Study

分割 支持向量机 萎缩 人工智能 模式识别(心理学) 无线电技术 计算机科学 肌肉萎缩 特征提取 医学 病理
作者
Getao Du,Peng Zhang,Guo Jianzhong,Xu Zhou,Guanghan Kan,Jiajie Jia,Xiaoping Chen,Jimin Liang,Yonghua Zhan
标识
DOI:10.1007/s10278-024-01122-w
摘要

Radiomics features have been widely used as novel biomarkers in the diagnosis of various diseases, but whether radiomics features derived from hematoxylin and eosin (H&E) images can evaluate muscle atrophy has not been studied. Therefore, this study aims to establish a new biomarker based on H&E images using radiomics methods to quantitatively analyze H&E images, which is crucial for improving the accuracy of muscle atrophy assessment. Firstly, a weightless muscle atrophy model was established by laying macaques in bed, and H&E images of the shank muscle fibers of the control and bed rest (BR) macaques were collected. Muscle fibers were accurately segmented by designing a semi-supervised segmentation framework based on contrastive learning. Then, 77 radiomics features were extracted from the segmented muscle fibers, and a stable subset of features was selected through the LASSO method. Finally, the correlation between radiomics features and muscle atrophy was analyzed using a support vector machine (SVM) classifier. The semi-supervised segmentation results show that the proposed method had an average Spearman's and intra-class correlation coefficient (ICC) of 88% and 86% compared to manually extracted features, respectively. Radiomics analysis showed that the AUC of the muscle atrophy evaluation model based on H&E images was 96.87%. For individual features, GLSZM_SZE outperformed other features in terms of AUC (91.5%) and ACC (84.4%). In summary, the feature extraction based on the semi-supervised segmentation method is feasible and reliable for subsequent radiomics research. Texture features have greater advantages in evaluating muscle atrophy compared to other features. This study provides important biomarkers for accurate diagnosis of muscle atrophy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
玉米侠发布了新的文献求助10
1秒前
小孙发布了新的文献求助10
1秒前
lx33101128发布了新的文献求助10
2秒前
研友_VZG7GZ应助勤劳的飞鸟采纳,获得10
6秒前
cc完成签到,获得积分10
6秒前
田様应助phyllis采纳,获得10
9秒前
11秒前
17秒前
miaowuuuuuuu完成签到 ,获得积分10
17秒前
小孟吖发布了新的文献求助10
21秒前
赖向珊应助Hayat采纳,获得50
21秒前
bella1201发布了新的文献求助10
22秒前
RoseTaurus完成签到,获得积分10
22秒前
23秒前
Owen应助孤独梦安采纳,获得10
25秒前
25秒前
缥缈涵菡发布了新的文献求助20
25秒前
26秒前
27秒前
jun发布了新的文献求助10
27秒前
能HJY发布了新的文献求助30
31秒前
让我康康发布了新的文献求助10
31秒前
冷傲初夏发布了新的文献求助10
32秒前
情怀应助小孙采纳,获得10
35秒前
易达发布了新的文献求助10
36秒前
无限猫咪完成签到,获得积分10
36秒前
CipherSage应助碗千岁采纳,获得10
36秒前
涨涨涨完成签到 ,获得积分10
38秒前
39秒前
白日梦完成签到,获得积分10
39秒前
尘羽临风关注了科研通微信公众号
40秒前
科研通AI2S应助乐观鱼采纳,获得10
41秒前
慕子默完成签到,获得积分10
43秒前
徐裘发布了新的文献求助10
44秒前
莉莉安完成签到 ,获得积分10
45秒前
45秒前
现代的自行车完成签到 ,获得积分10
46秒前
累啊发布了新的文献求助10
47秒前
小孙发布了新的文献求助10
52秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256323
求助须知:如何正确求助?哪些是违规求助? 2898596
关于积分的说明 8301615
捐赠科研通 2567759
什么是DOI,文献DOI怎么找? 1394681
科研通“疑难数据库(出版商)”最低求助积分说明 652913
邀请新用户注册赠送积分活动 630557