Exploring Radiomics Features Based on H&E Images as Potential Biomarkers for Evaluating Muscle Atrophy: A Preliminary Study

分割 支持向量机 萎缩 人工智能 模式识别(心理学) 无线电技术 计算机科学 肌肉萎缩 特征提取 医学 病理
作者
Getao Du,Peng Zhang,Guo Jianzhong,Xu Zhou,Guanghan Kan,Jiajie Jia,Xiaoping Chen,Jimin Liang,Yonghua Zhan
标识
DOI:10.1007/s10278-024-01122-w
摘要

Radiomics features have been widely used as novel biomarkers in the diagnosis of various diseases, but whether radiomics features derived from hematoxylin and eosin (H&E) images can evaluate muscle atrophy has not been studied. Therefore, this study aims to establish a new biomarker based on H&E images using radiomics methods to quantitatively analyze H&E images, which is crucial for improving the accuracy of muscle atrophy assessment. Firstly, a weightless muscle atrophy model was established by laying macaques in bed, and H&E images of the shank muscle fibers of the control and bed rest (BR) macaques were collected. Muscle fibers were accurately segmented by designing a semi-supervised segmentation framework based on contrastive learning. Then, 77 radiomics features were extracted from the segmented muscle fibers, and a stable subset of features was selected through the LASSO method. Finally, the correlation between radiomics features and muscle atrophy was analyzed using a support vector machine (SVM) classifier. The semi-supervised segmentation results show that the proposed method had an average Spearman's and intra-class correlation coefficient (ICC) of 88% and 86% compared to manually extracted features, respectively. Radiomics analysis showed that the AUC of the muscle atrophy evaluation model based on H&E images was 96.87%. For individual features, GLSZM_SZE outperformed other features in terms of AUC (91.5%) and ACC (84.4%). In summary, the feature extraction based on the semi-supervised segmentation method is feasible and reliable for subsequent radiomics research. Texture features have greater advantages in evaluating muscle atrophy compared to other features. This study provides important biomarkers for accurate diagnosis of muscle atrophy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助章德仁采纳,获得10
刚刚
highmoon发布了新的文献求助10
刚刚
彭于晏应助夏小胖采纳,获得10
1秒前
瓜皮糖浆发布了新的文献求助10
1秒前
科研通AI2S应助maqedd采纳,获得10
1秒前
吕布发布了新的文献求助10
2秒前
2秒前
科目三应助乐观小之采纳,获得10
2秒前
甜美无剑应助boltos采纳,获得10
3秒前
Leo发布了新的文献求助10
3秒前
清淮发布了新的文献求助10
3秒前
乐唔完成签到,获得积分10
3秒前
桐桐应助老迟到的冰海采纳,获得30
3秒前
3秒前
3秒前
una发布了新的文献求助10
3秒前
巴旦木发布了新的文献求助10
3秒前
ding应助研友_LMBAXn采纳,获得10
4秒前
4秒前
ZZC10完成签到,获得积分10
4秒前
5秒前
黑羊完成签到,获得积分10
5秒前
自律的王一博完成签到,获得积分10
6秒前
Akim应助ale采纳,获得10
7秒前
Criminology34应助喻初原采纳,获得10
7秒前
8秒前
小蒋发布了新的文献求助20
8秒前
9秒前
ZF发布了新的文献求助10
9秒前
9秒前
9秒前
隐形曼青应助北月采纳,获得10
9秒前
9秒前
10秒前
遇见完成签到,获得积分10
10秒前
FyD发布了新的文献求助10
10秒前
10秒前
洛兮完成签到,获得积分10
10秒前
Lucas应助飞在夏夜的猫采纳,获得10
10秒前
慕青应助小宋采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Advanced Memory Technology: Functional Materials and Devices 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693193
求助须知:如何正确求助?哪些是违规求助? 5091453
关于积分的说明 15210744
捐赠科研通 4850188
什么是DOI,文献DOI怎么找? 2601603
邀请新用户注册赠送积分活动 1553417
关于科研通互助平台的介绍 1511406