植树造林
绿化
异戊二烯
环境科学
防风林
中国
温室气体
环境保护
地理
农林复合经营
生态学
化学
共聚物
聚合物
有机化学
考古
生物
作者
Yichao Gai,Lei Sun,Shimin Fu,Chuanyong Zhu,Changtong Zhu,Renqiang Li,Zhenguo Liu,Baolin Wang,Chen Wang,Na Yang,Juan Li,Chongqing Xu,Guihuan Yan
标识
DOI:10.1016/j.scitotenv.2024.172551
摘要
The rapid expansion of green areas in China has enhanced carbon sinks, but it also presents challenges regarding increased biogenic volatile organic compound (BVOC) emissions. This study examines the impact of greening trends on BVOC emissions in China from 1985 to 2001 and from 2001 to 2022, focusing on evaluating long-term trends in BVOC emissions within eight afforestation project areas during these two periods. Emission factors for 62 dominant tree species and provincial Plant Functional Types were updated. The BVOC emission inventories were developed for China at a spatial resolution of 27 km × 27 km using the Model of Emissions of Gases and Aerosols from Nature. The national BVOC emissions in 2018 were estimated at 54.24 Tg, with isoprene, monoterpenes, sesquiterpenes, and other BVOC contributing 26.94 Tg, 2.29 Tg, 0.44 Tg, and 24.57 Tg, respectively. Over the past 37 years, BVOC emissions experienced a slow growth rate of 1.7 % (0.79 Tg) during 1985–2001, followed by a significant increase of 12 % (6 Tg) from 2001 to 2022. BVOC emissions in the eight afforestation project areas increased by 2 % and 20 % during the two periods. From 2001 to 2022, at the regional scale, the Shelterbelt program for the middle reaches of the Yellow River area exhibited the largest rate of increase (43 %) in BVOC emissions. The Shelterbelt program for the upper and middle reaches of the Yangtze River made the most largest contribution (45 %) to the national increase in BVOC emissions. Afforestation projects have shifted towards planting more broadleaf trees than needleleaf trees from 2001 to 2022, and there also showed a change from herbaceous plants to broadleaf trees. These trends have led to higher average emission factors for vegetation, resulting in increased BVOC emissions. It underscores the importance of considering BVOC emissions when evaluating afforestation initiatives, emphasizing the need to balancing ecological benefits with potential atmospheric consequences.
科研通智能强力驱动
Strongly Powered by AbleSci AI