DEep LearnIng-based QuaNtification of epicardial adipose tissue predicts MACE in patients undergoing stress CMR

狼牙棒 心外膜脂肪 心外膜脂肪组织 心脏病学 脂肪组织 内科学 医学 心肌梗塞 传统PCI
作者
Marco Guglielmo,Marco Penso,Maria Ludovica Carerj,Carlo Maria Giacari,Alessandra Volpe,Laura Fusini,Andrea Baggiano,Saima Mushtaq,Andrea Annoni,F. Cannata,Francesco Cilia,Alberico Del Torto,Fabio Fazzari,Alberto Formenti,Antonio Frappampina,Paola Gripari,Daniele Junod,Maria Elisabetta Mancini,Valentina Mantegazza,Riccardo Maragna,Francesca Marchetti,Giorgio Mastroiacovo,Sergio Pirola,Luigi Tassetti,Francesca Baessato,Valentina Corino,Andrea Igoren Guaricci,Mark Rabbat,Alexia Rossi,Chiara Rovera,Pietro Costantini,Ivo van der Bilt,Pim van der Harst,Marianna Fontana,Enrico G. Caiani,Mauro Pepi,Gianluca Pontone
出处
期刊:Atherosclerosis [Elsevier]
卷期号:397: 117549-117549 被引量:5
标识
DOI:10.1016/j.atherosclerosis.2024.117549
摘要

Background and aims This study investigated the additional prognostic value of epicardial adipose tissue (EAT) volume for major adverse cardiovascular events (MACE) in patients undergoing stress cardiac magnetic resonance (CMR) imaging. Methods 730 consecutive patients [mean age: 63±10 years; 616 men] who underwent stress CMR for known or suspected coronary artery disease were randomly divided into derivation (n=365) and validation (n=365) cohorts. MACE was defined as non-fatal myocardial infarction and cardiac deaths. A deep learning algorithm was developed and trained to quantify EAT volume from CMR. EAT volume was adjusted for height (EAT volume index). A composite CMR-based risk score by Cox analysis of the risk of MACE was created. Results In the derivation cohort, 32 patients (8.7%) developed MACE during a follow-up of 2103 days. Left ventricular ejection fraction (LVEF) <35% (HR 4.407 [95% CI 1.903-10.202]; p<0.001), stress perfusion defect (HR 3.550 [95% CI 1.765-7.138]; p<0.001), late gadolinium enhancement (LGE) (HR 4.428 [95%CI 1.822-10.759]; p=0.001) and EAT volume index (HR 1.082 [95% CI 1.045-1.120]; p<0.001) were independent predictors of MACE. In a multivariate Cox regression analysis, adding EAT volume index to a composite risk score including LVEF, stress perfusion defect and LGE provided additional value in MACE prediction, with a net reclassification improvement of 0.683 (95%CI, 0.336-1.03; p<0.001).The combined evaluation of risk score and EAT volume index showed a higher Harrel C statistic as compared to risk score (0.85 vs. 0.76; p<0.001) and EAT volume index alone (0.85 vs.0.74; p<0.001).These findings were confirmed in the validation cohort. Conclusions In patients with clinically indicated stress CMR, fully automated EAT volume measured by deep learning can provide additional prognostic information on top of standard clinical and imaging parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
红红完成签到,获得积分10
3秒前
瑶一瑶发布了新的文献求助10
3秒前
NexusExplorer应助刘鹏宇采纳,获得10
3秒前
roselau完成签到,获得积分10
3秒前
yudandan@CJLU完成签到,获得积分10
4秒前
4秒前
半山完成签到,获得积分10
8秒前
吹泡泡的红豆完成签到 ,获得积分10
9秒前
研友_89eBO8完成签到 ,获得积分10
9秒前
隐形曼青应助ZeJ采纳,获得10
9秒前
9秒前
隐形曼青应助温暖的钻石采纳,获得10
10秒前
Khr1stINK发布了新的文献求助10
11秒前
123cxj发布了新的文献求助10
12秒前
星辰大海应助红红采纳,获得10
12秒前
sweetbearm应助小周采纳,获得10
13秒前
科研通AI5应助赖道之采纳,获得10
13秒前
14秒前
HonamC完成签到,获得积分10
15秒前
十三十四十五完成签到,获得积分10
16秒前
潇洒的问夏完成签到 ,获得积分10
18秒前
无声瀑布完成签到,获得积分10
18秒前
Bingtao_Lian完成签到 ,获得积分10
19秒前
小布丁完成签到 ,获得积分10
19秒前
竹筏过海应助季生采纳,获得30
20秒前
21秒前
buno应助22采纳,获得10
22秒前
赘婿应助TT采纳,获得10
23秒前
23秒前
23秒前
24秒前
Jenny应助赖道之采纳,获得10
26秒前
依古比古完成签到 ,获得积分10
28秒前
汎影发布了新的文献求助10
28秒前
小二完成签到,获得积分10
28秒前
29秒前
31秒前
顾矜应助长情洙采纳,获得10
31秒前
monere发布了新的文献求助30
31秒前
Xiaoxiao应助汉关采纳,获得10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808