Ursa: Lightweight Resource Management for Cloud-Native Microservices

微服务 云计算 计算机科学 资源管理(计算) 操作系统 分布式计算
作者
Yanqi Zhang,Zhuangzhuang Zhou,Sameh Elnikety,Christina Delimitrou
标识
DOI:10.1109/hpca57654.2024.00077
摘要

Resource management for cloud-native microservices has attracted a lot of recent attention. Previous work has shown that machine learning (ML)-driven approaches out-perform traditional techniques, such as autoscaling, in terms of both SLA maintenance and resource efficiency. However, ML-driven approaches also face challenges including lengthy data collection processes and limited scalability. We present Ursa, a lightweight resource management system for cloud-native microservices that addresses these challenges. Ursa uses an analytical model that decomposes the end-to-end SLA into per-service SLA, and maps per-service SLA to individual resource allocations per microservice tier. To speed up the exploration process and avoid prolonged SLA violations, Ursa explores each microservice individually, and swiftly stops exploration if latency exceeds its SLA. We evaluate Ursa on a set of representative and end-to-end microservice topologies, including a social network, media service and video processing pipeline, each consisting of multiple classes and priorities of requests with different SLAs, and compare it against two representative ML-driven systems, Sinan and Firm. Compared to these ML-driven approaches, Ursa provides significant advantages: It shortens the data collection process by more than 128 ×, and its control plane is 43 × faster than ML-driven approaches. At the same time, Ursa does not sacrifice resource efficiency or SLAs. During online deployment, Ursa reduces the SLA violation rate by 9.0% up to 49.9%, and reduces CPU allocation by up to 86.2% compared to ML-driven approaches

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
adamchris应助AlexLXJ采纳,获得10
刚刚
华仔应助LX采纳,获得10
1秒前
小二郎应助xm采纳,获得10
1秒前
1秒前
2秒前
NexusExplorer应助玖玖采纳,获得10
2秒前
保奔完成签到,获得积分10
2秒前
4秒前
4秒前
等待发布了新的文献求助10
5秒前
祖佳完成签到,获得积分10
5秒前
wan12138发布了新的文献求助10
6秒前
小二郎应助lucky采纳,获得10
6秒前
CCsouljump完成签到 ,获得积分10
6秒前
梦想飞翔发布了新的文献求助10
7秒前
8秒前
linzedd发布了新的文献求助10
8秒前
kaede完成签到,获得积分10
9秒前
我是老大应助杰杰大叔采纳,获得10
9秒前
10秒前
丘比特应助迷路的幼南采纳,获得10
10秒前
lzn完成签到,获得积分20
11秒前
12秒前
13秒前
科目三应助爱笑的天空采纳,获得10
13秒前
13秒前
xuexuexixi123完成签到 ,获得积分10
13秒前
15秒前
平淡的冰巧完成签到,获得积分10
15秒前
15秒前
浮游应助志不在科研采纳,获得10
16秒前
two发布了新的文献求助10
17秒前
懒洋洋完成签到 ,获得积分10
18秒前
JL发布了新的文献求助10
18秒前
Eddy完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
小杭76应助科研通管家采纳,获得10
19秒前
AMD发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160