已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ursa: Lightweight Resource Management for Cloud-Native Microservices

微服务 云计算 计算机科学 资源管理(计算) 操作系统 分布式计算
作者
Yanqi Zhang,Zhuangzhuang Zhou,Sameh Elnikety,Christina Delimitrou
标识
DOI:10.1109/hpca57654.2024.00077
摘要

Resource management for cloud-native microservices has attracted a lot of recent attention. Previous work has shown that machine learning (ML)-driven approaches out-perform traditional techniques, such as autoscaling, in terms of both SLA maintenance and resource efficiency. However, ML-driven approaches also face challenges including lengthy data collection processes and limited scalability. We present Ursa, a lightweight resource management system for cloud-native microservices that addresses these challenges. Ursa uses an analytical model that decomposes the end-to-end SLA into per-service SLA, and maps per-service SLA to individual resource allocations per microservice tier. To speed up the exploration process and avoid prolonged SLA violations, Ursa explores each microservice individually, and swiftly stops exploration if latency exceeds its SLA. We evaluate Ursa on a set of representative and end-to-end microservice topologies, including a social network, media service and video processing pipeline, each consisting of multiple classes and priorities of requests with different SLAs, and compare it against two representative ML-driven systems, Sinan and Firm. Compared to these ML-driven approaches, Ursa provides significant advantages: It shortens the data collection process by more than 128 ×, and its control plane is 43 × faster than ML-driven approaches. At the same time, Ursa does not sacrifice resource efficiency or SLAs. During online deployment, Ursa reduces the SLA violation rate by 9.0% up to 49.9%, and reduces CPU allocation by up to 86.2% compared to ML-driven approaches

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛完成签到 ,获得积分10
3秒前
在水一方应助曦熙采纳,获得10
3秒前
4秒前
5秒前
笨笨念文完成签到 ,获得积分10
9秒前
莉莉完成签到,获得积分20
11秒前
14秒前
幸福大白发布了新的文献求助10
19秒前
无奈的盼望完成签到 ,获得积分10
21秒前
大模型应助咚咚咚采纳,获得10
22秒前
曦熙完成签到,获得积分10
22秒前
记得吃蔬菜完成签到,获得积分10
25秒前
26秒前
ding应助hy采纳,获得10
29秒前
30秒前
30秒前
清璃完成签到 ,获得积分10
32秒前
咚咚咚发布了新的文献求助10
36秒前
CodeCraft应助医者仓鼠采纳,获得10
37秒前
buno应助wly1111采纳,获得10
41秒前
43秒前
SiO2完成签到 ,获得积分0
44秒前
52秒前
科研通AI5应助chenjun7080采纳,获得10
56秒前
医者仓鼠发布了新的文献求助10
58秒前
123发布了新的文献求助10
1分钟前
Owen应助jichenzhang2024采纳,获得30
1分钟前
1分钟前
MXene应助木又采纳,获得20
1分钟前
1分钟前
SciGPT应助高挑的如柏采纳,获得10
1分钟前
chenjun7080发布了新的文献求助10
1分钟前
SDUMoist发布了新的文献求助20
1分钟前
1分钟前
Thien发布了新的文献求助10
1分钟前
科研通AI2S应助络绎采纳,获得10
1分钟前
李健应助爱航哥多久了采纳,获得10
1分钟前
1分钟前
小马甲应助roro熊采纳,获得10
1分钟前
CipherSage应助毅诚菌采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4625231
求助须知:如何正确求助?哪些是违规求助? 4024425
关于积分的说明 12457124
捐赠科研通 3709196
什么是DOI,文献DOI怎么找? 2045920
邀请新用户注册赠送积分活动 1077828
科研通“疑难数据库(出版商)”最低求助积分说明 960374