Energy-efficient routing protocol for underwater wireless sensor networks using a hybrid metaheuristic algorithm

计算机科学 元启发式 水下 无线传感器网络 路由协议 无线路由协议 算法 协议(科学) 布线(电子设计自动化) 计算机网络 分布式计算 医学 海洋学 替代医学 病理 地质学
作者
Behzad Saemi,Fariba Goodarzian
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108132-108132 被引量:10
标识
DOI:10.1016/j.engappai.2024.108132
摘要

Energy-efficient routing protocols for Underwater Wireless Sensor Networks (UWSNs) have become critical in recent years for the intelligent and reliable collection of data from the seas and oceans. UWSNs are a group of deep-water sensors that are used for marine exploration and ocean surveillance. This network is used to route data collected by sensors deployed at different water depths to surface water sensors (sinks). Transmitting the collected data from the ocean's depths to the surface is difficult due to the limited available bandwidth, inconvenient location, high mobility of the sensors, and, most importantly, limited energy. The purpose of this paper is to present a routing protocol that improves the reliability of data transmission from a source sensor to a destination sensor. A hybrid metaheuristic algorithm called GSLS is proposed to use in this protocol, which combines a Global Search Algorithm (GSA) and a Local Search Algorithm (LSA). The proposed GSA is an algorithm inspired by several of the Genetic Algorithm's (GAs) solution updating properties. The proposed LSA algorithm is an extension of the scattered search algorithm. The proposed GSA and LSA are combined in parallel to search the problem's space simultaneously to find an optimal path in an acceptable time. as a result, more problem area is examined, and the algorithm's run time to find the best route is reduced. Our simulation results emphasize the high quality of the path, the algorithm's low energy consumption, and the algorithm's high speed in comparison to the state-of-the-art.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panx发布了新的文献求助10
刚刚
1秒前
2秒前
bkagyin应助如人饮水君采纳,获得10
2秒前
3秒前
3秒前
3秒前
Vicky完成签到 ,获得积分10
3秒前
bao完成签到,获得积分10
3秒前
小新完成签到 ,获得积分10
4秒前
李朝富发布了新的文献求助10
4秒前
诚心水蓝完成签到,获得积分10
4秒前
tommyliu完成签到,获得积分10
4秒前
万金油完成签到,获得积分10
4秒前
发发完成签到 ,获得积分10
5秒前
5秒前
小马甲应助贵贵采纳,获得10
5秒前
5秒前
爆米花应助丽莉采纳,获得10
5秒前
5秒前
复杂念梦完成签到 ,获得积分10
6秒前
attilio完成签到,获得积分10
7秒前
7秒前
Mr.Young完成签到,获得积分10
7秒前
慕青应助李朝富采纳,获得10
7秒前
8秒前
Ys完成签到,获得积分20
8秒前
吲哚发布了新的文献求助10
8秒前
Asura完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
思源应助天降采纳,获得10
10秒前
豆子完成签到,获得积分0
11秒前
任晓宇发布了新的文献求助10
11秒前
11秒前
饱满的新之完成签到 ,获得积分10
12秒前
莫声干大事完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147236
求助须知:如何正确求助?哪些是违规求助? 2798534
关于积分的说明 7829576
捐赠科研通 2455246
什么是DOI,文献DOI怎么找? 1306655
科研通“疑难数据库(出版商)”最低求助积分说明 627883
版权声明 601567