Brain Correlates of Chronic Pain Onset, Progression, and Resolution

慢性疼痛 分辨率(逻辑) 心理学 医学 神经科学 计算机科学 人工智能
作者
Katerina Zorina-Lichtenwalter,Carmen I. Bango,Marta Čeko,Lydia Rader,Martin A. Lindquist,Naomi P. Friedman,Tor D. Wager
出处
期刊:The Journal of Pain [Elsevier]
卷期号:25 (4): 46-46
标识
DOI:10.1016/j.jpain.2024.01.212
摘要

MRI-detected changes in brain structure have been reported in chronic pain patients. Whether these anomalies result from, lead to, or are merely comorbid with prolonged pain remains unclear. To investigate this relationship, we examined changes in neural imaging-derived phenotypes (IDPs) and their correlations with chronic pain trajectories. We used longitudinal data from 40,000 U. K. Biobank participants, grouping them into one of four categories: unresolved, resolved, new chronic pain, and pain-free controls in and across eight body sites (head, face, neck/shoulder, back, stomach, hip, knee, and widespread). Chronic pain status was assessed at two visits: baseline (without imaging), and follow-up (with MRI). We used multiple linear regression models (one per IDP as outcome) to estimate associations between pain trajectories and changes in brain-wide gray matter volume, cortical thickness, and surface area measures, while controlling for demographic and scanning procedure metrics. Our results show that unresolved pain is associated with widespread gray matter volume and surface area reduction in both cortical and subcortical regions; new chronic pain is associated with limited gray matter volume reduction focused in cortical regions most affected in the unresolved pain group, and no changes in subcortical regions; resolved pain is associated with surface area reduction exclusively in the somatosensory cortex. Collectively, these findings suggest a reversible spreading of gray matter loss across the brain that correlates with chronic pain duration. We have thus identified brain markers of chronic pain progression and resolution, which may be targeted in novel treatment approaches, such as neuromodulation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助Josh采纳,获得30
1秒前
worldlet发布了新的文献求助10
1秒前
听风讲你发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
heyunfan发布了新的文献求助10
2秒前
汉堡包应助冷树采纳,获得10
3秒前
CipherSage应助坦率的寻双采纳,获得10
3秒前
容止完成签到 ,获得积分10
4秒前
稳重的如容完成签到,获得积分10
4秒前
yang完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
sje发布了新的文献求助10
7秒前
7秒前
schuang完成签到,获得积分10
8秒前
8秒前
苏葳蕤完成签到,获得积分10
8秒前
wdnyrrc发布了新的文献求助10
9秒前
黄花发布了新的文献求助10
9秒前
10秒前
迅哥发布了新的文献求助10
12秒前
wanci应助贪玩的笑阳采纳,获得10
15秒前
25号底片应助通达采纳,获得10
15秒前
bkagyin应助科研狗采纳,获得10
15秒前
15秒前
15秒前
斯文败类应助孙宏采纳,获得30
15秒前
16秒前
17秒前
阿尼亚发布了新的文献求助30
18秒前
Akim应助sje采纳,获得10
19秒前
小白白白完成签到 ,获得积分10
19秒前
活泼的冬寒完成签到,获得积分20
19秒前
栗子鱼发布了新的文献求助10
19秒前
LIN发布了新的文献求助10
19秒前
JamesPei应助听风讲你采纳,获得10
20秒前
ZR完成签到,获得积分10
20秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138230
求助须知:如何正确求助?哪些是违规求助? 2789160
关于积分的说明 7790351
捐赠科研通 2445545
什么是DOI,文献DOI怎么找? 1300521
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046